
NAG Fortran Library Routine Document

E04WDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the details of

the algorithm. If you wish to use default settings for all of the optional parameters, you need only read

Sections 1 to 9 of this document. Refer to the additional Sections 10, 11 and 12 for a detailed description of the

algorithm, the specification of the optional parameters and a description of the monitoring information

produced by the routine.

1 Purpose

E04WDF is designed to minimize an arbitrary smooth function subject to constraints (which may include
simple bounds on the variables, linear constraints and smooth nonlinear constraints) using a sequential
quadratic programming (SQP) method. As many first derivatives as possible should be supplied by the
user; any unspecified derivatives are approximated by finite differences. It is not intended for large sparse
problems.

E04WDF may also be used for unconstrained, bound-constrained and linearly constrained optimization.

E04WDF uses forward communication for evaluating the objective function, the nonlinear constraint
functions, and any of their derivatives.

The initialization routine E04WCF must have been called prior to calling E04WDF.

2 Specification

SUBROUTINE E04WDF (N, NCLIN, NCNLN, LDA, LDCJ, LDH, A, BL, BU, CONFUN,
1 OBJFUN, MAJITS, ISTATE, CCON, CJAC, CLAMDA, OBJF,
2 GRAD, HESS, X, IW, LENIW, RW, LENRW, IUSER, RUSER,
3 IFAIL)

INTEGER N, NCLIN, NCNLN, LDA, LDCJ, LDH, MAJITS,
1 ISTATE(nctotl), IW(LENIW), LENIW, LENRW, IUSER(*),
2 IFAIL

double precision A(LDA,*), BL(nctotl), BU(nctotl), CCON(*), CJAC(LDCJ,*),
1 CLAMDA(nctotl), OBJF, GRAD(N), HESS(LDH,*), X(N),
2 RW(LENRW), RUSER(*)
EXTERNAL CONFUN, OBJFUN

See the note at the beginning of Section 5 for a description of nctotl.

Before calling E04WDF, or any of the option setting routines E04WEF, E04WFF, E04WGF or E04WHF,
routine E04WCF must be called. The specification for E04WCF is:

SUBROUTINE E04WCF (IW, LENIW, RW, LENRW, IFAIL)

INTEGER IW(LENIW), LENIW, LENRW, IFAIL

double precision RW(LENRW)

E04WCF must be called with LENIW and LENRW, the declared lengths of IW and RW respectively,
satisfying:

LENIW � 600;

LENRW � 600.

The contents of the arrays IW and RW must not be altered between calls of the routines E04WCF,
E04WDF, E04WEF, E04WGF and E04WHF.
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3 Description

E04WDF is designed to solve nonlinear programming problems – the minimization of a smooth nonlinear
function subject to a set of constraints on the variables. E04WDF is suitable for small dense problems.
The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x

ALx
c xð Þ

0
@

1
A � u, ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n constant matrix, and c xð Þ is
an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ may be
empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least twice-
continuously differentiable. (The method of E04WDF will usually solve (1) if there are only isolated
discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear constraints,
we prefer to distinguish between them for reasons of computational efficiency. For the same reason, the
linear constraints should not be included in the definition of the nonlinear constraints. Upper and lower
bounds are specified for all the variables and for all the constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to special
values that will be treated as �1 or þ1. (See the description of the optional parameter Infinite Bound
Size in Section 11.2.)

A typical invocation of E04WDF would be:

call E04WCF (IW, LENIW, ...)
call E04WEF (ISPECS, IW, ...)
call E04WDF (N, NCLIN, NCNLN, ...)

where E04WEF reads a file of optional definitions.

Table 1 illustrates the feasible region for the jth pair of constraints ‘j � rj xð Þ � uj. The quantity of � is

the optional parameter Feasibility Tolerance, which can be set by the user (see Section 11). The
constraints ‘j � rj � uj are considered ‘satisfied’ if rj lies in Regions 2, 3 or 4, and ‘inactive’ if rj lies in
Region 3. The constraint rj � lj is considered ‘active’ in Region 2, and ‘violated’ in Region 1. Similarly,

rj � uj is active in Region 4, and violated in Region 5. For equality constraints (‘j ¼ uj), Regions 2 and

4 are the same and Region 3 is empty.

� � ��

ujlj rjðxÞ

violated active free (inactive) active violated

1 2 3 4 5

Table 1
Illustration of the constraints ‘j � rj xð Þ � uj

If there are no nonlinear constraints in (1) and F is linear or quadratic, then it will generally be more
efficient to use one of E04MFF=E04MFA, E04NCF=E04NCA or E04NFF=E04NFA. If the problem is
large and sparse and does have nonlinear constraints, then E04VHF should be used, since E04WDF treats
all matrices as dense.

The user must supply an initial estimate of the solution to (1), together with subroutines that define F xð Þ,
c xð Þ and as many first partial derivatives as possible; unspecified derivatives are approximated by finite
differences.

E04WDF NAG Fortran Library Manual

E04WDF.2 [NP3657/21]



The objective function is defined by subroutine OBJFUN, and the nonlinear constraints are defined by
subroutine CONFUN. On every call, these subroutines must return appropriate values of the objective and
nonlinear constraints. The user should also provide the available partial derivatives. Any unspecified
derivatives are approximated by finite differences; see Section 11.2 for a discussion of the optional
parameter Derivative Level. Just before either OBJFUN or CONFUN is called, each element of the
current gradient array GRAD or CJAC is initialized to a special value. On exit, any element that retains
the value is estimated by finite differences. Note that if there are any nonlinear constraints then the first

call to CONFUN will precede the first call to OBJFUN.

For maximum reliability, it is preferable for the user to provide all partial derivatives (see Chapter 8 of
Gill et al. (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to
provide as many as possible. While developing the subroutines OBJFUN and CONFUN, the optional
parameter Verify Level (see Section 11.2) should be used to check the calculation of any known gradients.

The method used by E04WDF is described in detail in Section 10.
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5 Parameters

Note 1: In the following specification of E04WDF, we define r xð Þ as the vector of combined constraint

functions

r xð Þ ¼
x

ALx
c xð Þ

0
@

1
A,

and use nctotl to denote a variable that holds its dimension Nþ NCLINþ NCNLN.

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.
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3: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E04WDF is
called.

Constraint: LDA � max 1;NCLINð Þ.

5: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04WDF is called.

Constraint: LDCJ � max 1;NCNLNð Þ.

6: LDH – INTEGER Input

On entry: the first dimension of the array HESS as declared in the (sub)program from which
E04WDF is called.

Constraint: LDH � N.

7: AðLDA,�Þ – double precision array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0 and at least 1 otherwise.

On entry: the ith row of the array A must contain the ith row of the matrix AL of general linear
constraints in (1). That is, the ith row contains the coefficients of the ith general linear constraint,
for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0 then the array A is not referenced.

8: BLðnctotlÞ – double precision array Input

9: BUðnctotlÞ – double precision array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, the
next nL elements the bounds for the general linear constraints (if any) and the next nN elements the
bounds for the general nonlinear constraints (if any). To specify a non-existent lower bound (i.e.,
lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a non-existent upper bound (i.e., uj ¼ þ1), set

BUðjÞ � bigbnd; where bigbnd is the optional parameter Infinite Bound Size (see Section 11.2).
To specify the jth constraint as an equality, set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ; nctotl;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

10: CONFUN – SUBROUTINE, supplied by the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian (¼ @c

@x
) for a specified n element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E04WDF and CONFUN may be the dummy
routine E04WDP. (E04WDP is included in the NAG Fortran Library and so need not be supplied
by the user. Its name may be implementation-dependent: see the Users’ Note for your
implementation for details.) If there are nonlinear constraints, the first call to CONFUN will occur
before the first call to OBJFUN.

If all constraint gradients (Jacobian elements) are known (i.e., Derivative Level ¼ 2 or 3, any
constant elements may be assigned to CJAC once only at the start of the optimization. An element
of CJAC that is not subsequently assigned in CONFUN will retain its initial value throughout.
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Constant elements may be loaded in CJAC during the first call to CONFUN (signalled by the value
of NSTATE ¼ 1). The ability to preload constants is useful when many Jacobian elements are
identically zero, in which case CJAC may be initialized to zero and non-zero elements may be reset
by CONFUN.

It must be emphasized that, if Derivative Level < 2, unassigned elements of CJAC are not treated
as constant; they are estimated by finite differences, at non-trivial expense.

Its specification is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJ, NEEDC, X, CCON, CJAC,
1 NSTATE, IUSER, RUSER)

INTEGER MODE, NCNLN, N, LDCJ, NEEDC(*), NSTATE, IUSER(*)

double precision X(N), CCON(*), CJAC(LDCJ,*), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: MODE is set by E04WDF to indicate which values must be assigned during
each call of CONFUN. Only the following values need be assigned, for each value of i
such that NEEDCðiÞ > 0:

if MODE ¼ 0, the components of CCON corresponding to positive values in
NEEDC must be set. Other compoments and the array CJAC are ignored;

if MODE ¼ 1, the known components of the rows of CJAC corresponding to
positive values in NEEDC must be set. Other rows of CJAC and the array CCON
will be ignored;

if MODE ¼ 2, only the elements of CCON corresponding to positive values of
NEEDC need to be set (and similarly for the known components of the rows of
CJAC).

On exit: MODE may be used to indicate that you are unable or unwilling to evaluate the
constraint functions at the current x.

During the linesearch, the constraint functions are evaluated at points of the form
x ¼ xk þ �pk after they have already been evaluated satisfactorily at xk. At any such �,
if you set MODE ¼ �1, E04WDF will evaluate the functions at some point closer to xk

(where they are more likely to be defined).

If for some reason you wish to terminate the current problem, set MODE < �1.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC.

5: NEEDCð�Þ – INTEGER array Input

On entry: the indices of the elements of CCON and/or CJAC that must be evaluated by
CONFUN. If NEEDCðiÞ > 0 then the ith element of CCON and/or the available
elements of the ith row of CJAC (see parameter MODE above) must be evaluated at x.

6: XðNÞ – double precision array Input

On entry: x, the vector of variables at which the constraint functions and/or the available
elements of the constraint Jacobian are to be evaluated.
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7: CCONð�Þ – double precision array Output

On exit: if NEEDCðiÞ > 0 and MODE ¼ 0 or 2, CCONðiÞ must contain the value of the
ith constraint at x. The remaining elements of CCON, corresponding to the non-positive
elements of NEEDC, are ignored.

8: CJACðLDCJ,�Þ – double precision array Input/Output

On entry: the elements of CJAC are set to special values which enable E04WDF to detect
whether they are reset by CONFUN.

On exit: if NEEDCðiÞ > 0 and MODE ¼ 1 or 2, the ith row of CJAC must contain the
available elements of the vector rci given by

rci ¼
@ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

,

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. See also the parameter NSTATE below. The remaining rows of
CJAC, corresponding to non-positive elements of NEEDC, are ignored.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3 (see
Section 11.2)), any constant elements may be assigned to CJAC one time only at the start
of the optimization. An element of CJAC that is not subsequently assigned in CONFUN
will retain its initial value throughout. Constant elements may be loaded into CJAC
during the first call to CONFUN (signalled by the value NSTATE ¼ 1). The ability to
preload constants is useful when many Jacobian elements are identically zero, in which
case CJAC may be initialized to zero and non-zero elements may be reset by CONFUN.

Note that constant non-zero elements do affect the values of the constraints. Thus, if
CJACði; jÞ is set to a constant value, it need not be reset in subsequent calls to CONFUN,
but the value CJACði; jÞ �XðjÞ must nonetheless be added to CCONðiÞ. For example,
if CJACð1; 1Þ ¼ 2 and CJACð1; 2Þ ¼ �5 then the term 2�Xð1Þ � 5�Xð2Þ must be
included in the definition of CCONð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJAC
are not treated as constant; they are estimated by finite differences, at non-trivial expense.
If the user does not supply a value for Difference Interval (see Section 11.2), an interval
for each element of x is computed automatically at the start of the optimization. The
automatic procedure can usually identify constant elements of CJAC, which are then
computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04WDF is calling CONFUN for the first time. This
parameter setting allows the user to save computation time if certain data must be read or
calculated only once.

10: IUSERð�Þ – INTEGER array Communication Array

11: RUSERð�Þ – double precision array Communication Array

CONFUN is called from E04WDF with the parameters IUSER and RUSER as supplied to
E04WDF. The user is free to use the arrays IUSER and RUSER to supply information to
CONFUN as an alternative to using COMMON.

CONFUN must be declared as EXTERNAL in the (sub)program from which E04WDF is called.
Parameters denoted as Input must not be changed by this procedure.

CONFUN should be tested separately before being used in conjunction with E04WDF. See also the
optional parameter Verify Level in Section 11.2.
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11: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F

@x

� �
for

a specified n element of vector x.

Its specification is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, GRAD, NSTATE, IUSER, RUSER)

INTEGER MODE, N, NSTATE, IUSER(*)

double precision X(N), OBJF, GRAD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: MODE is set by E04WDF to indicate which values must be assigned during
each call of OBJFUN. Only the following values need be assigned:

if MODE ¼ 0, OBJF;
if MODE ¼ 1, all available elements of GRAD;
if MODE ¼ 2, OBJF and all available elements of GRAD.

On exit: MODE may be used to indicate that you are unable or unwilling to evaluate the
objective function at the current x.

During the linesearch, the function is evaluated at points of the form x ¼ xk þ �pk after
they have already been evaluated satisfactorily at xk. At any such �, if you set
MODE ¼ �1, E04WDF will evaluate the functions at some point closer to xk (where
they are more likely to be defined).

If for some reason you wish to terminate solution of the current problem, set
MODE < �1.

2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – double precision array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

4: OBJF – double precision Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at x.

5: GRADðNÞ – double precision array Input/Output

On entry: GRAD is set to a special value.

On exit: if MODE ¼ 1 or 2, GRAD must return the available elements of the gradient
evaluated at x, i.e., GRAD ið Þ contains the partial derivative @F=@xi.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E04WDF is calling OBJFUN for the first time. This
parameter setting allows the user to save computation time if certain data must be read or
calculated only once.

7: IUSERð�Þ – INTEGER array Communication Array

8: RUSERð�Þ – double precision array Communication Array

OBJFUN is called from E04WDF with the parameters IUSER and RUSER as supplied to
E04WDF. The user is free to use the arrays IUSER and RUSER to supply information to
OBJFUN as an alternative to using COMMON.
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OBJFUN must be declared as EXTERNAL in the (sub)program from which E04WDF is called.
Parameters denoted as Input must not be changed by this procedure.

OBJFUN should be tested separately before being used in conjunction with E04WDF. See also the
optional parameter Verify Level in Section 11.2.

12: MAJITS – INTEGER Output

On exit: the number of major iterations performed.

13: ISTATEðnctotlÞ – INTEGER array Input/Output

On entry: is an integer array that need not be initialized if E04WDF is called with a Cold Start (the
default option).

For a Warm Start, every element of ISTATE must be set. If E04WDF has just been called on a
problem with the same dimensions, ISTATE already contains valid values. Otherwise, ISTATEðjÞ
should indicate whether either of the constraints rj xð Þ � ‘j or rj xð Þ � uj is expected to be active.

The ordering of ISTATE is the same as for BL, BU and r xð Þ, i.e., the first N components of ISTATE
refer to the upper and lower bounds on the variables, the next NCLIN refer to the bounds on ALx,
and the last NCNLN refer to the bounds on c xð Þ. Possible values of ISTATEðiÞ follow:

0 Neither rj xð Þ � ‘j nor rj xð Þ � uj is expected to be active.

1 rj xð Þ � ‘j is expected to be active.

2 rj xð Þ � uj is expected to be active.

3 This may be used if ‘j ¼ uj. Normally an equality constraint rj xð Þ ¼ ‘j ¼ uj is active at a

solution.

The values 1, 2 or 3 all have the same effect when BLðjÞ ¼ BUðjÞ. If necessary, E04WDF will
override the user’s specification of ISTATE, so that a poor choice will not cause the algorithm to
fail.

On exit: describes the status of the constraints ‘ � r xð Þ � u. For the jth lower or upper bound,
j ¼ 1; . . . ; nctotl, the possible values of ISTATEðjÞ are as follows (see Table 1). � is the
appropriate feasibility tolerance.

�2 (Region 1) The lower bound is violated by more than �.
�1 (Region 5) The upper bound is violated by more than �.
0 (Region 3) Both bounds are satisfied by more than �.
1 (Region 2) The lower bound is active (to within �).
2 (Region 4) The upper bound is active (to within �).
3 (Region 2 ¼ Region 4) The bounds are equal and the equality constraint is satisfied (to within

�).

These values of ISTATE are labelled in the printed solution according to Table 2.

Region 1 2 3 4 5 2 � 4

ISTATEðjÞ �2 1 0 2 �1 3

Printed solution -- LL FR UL ++ EQ

Table 2
Labels used in the printed solution for the regions in

Table 1

14: CCONð�Þ – double precision array Output

Note: the dimension of the array CCON must be at least max 1;NCNLNð Þ.
On exit: if NCNLN > 0, CCONðiÞ contains the value of the ith nonlinear constraint function ci at
the final iterate, for i ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0 then the array CCON is not referenced.
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15: CJACðLDCJ,�Þ – double precision array Input/Output

Note: the second dimension of the array CJAC must be at least N if NCNLN > 0 and at least 1

otherwise.

On entry: in general, CJAC need not be initialized before the call to E04WDF. However, if
Derivative Level ¼ 3 (the default; see Section 11.2), any constant elements of CJAC may be
initialized. Such elements need not be reassigned on subsequent calls to CONFUN.

On exit: if NCNLN > 0, CJAC contains the Jacobian matrix of the nonlinear constraint functions at
the final iterate, i.e., CJACði; jÞ contains the partial derivative of the ith constraint function with
respect to the jth variable, for i ¼ 1; 2; . . . ;NCNLN; j ¼ 1; 2; . . . ;N. (See the discussion of
parameter CJAC under CONFUN.)

If NCNLN ¼ 0 then the array CJAC is not referenced.

16: CLAMDAðnctotlÞ – double precision array Input/Output

On entry: CLAMDA need not be set if the (default) Cold Start option is used.

If the Warm Start option has been chosen (see Section 11.2), CLAMDAðjÞ must contain a
multiplier estimate for each nonlinear constraint with a sign that matches the status of the constraint
specified by the ISTATE array (as above), for j ¼ NþNCLINþ 1;NþNCLINþ 2; . . . ; nctotl.
The remaining elements need not be set. Note that if the jth constraint is defined as ‘inactive’ by
the initial value of the ISTATE array (i.e., ISTATEðjÞ ¼ 0), CLAMDAðjÞ should be zero; if the
jth constraint is an inequality active at its lower bound (i.e., ISTATEðjÞ ¼ 1), CLAMDAðjÞ
should be non-negative; if the jth constraint is an inequality active at its upper bound (i.e.,
ISTATEðjÞ ¼ 2), CLAMDAðjÞ should be non-positive. If necessary, the routine will modify
CLAMDA to match these rules.

On exit: the values of the QP multipliers from the last QP subproblem. CLAMDAðjÞ should be
non-negative if ISTATEðjÞ ¼ 1 and non-positive if ISTATEðjÞ ¼ 2.

17: OBJF – double precision Output

On exit: the value of the objective function at the final iterate.

18: GRADðNÞ – double precision array Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

19: HESSðLDH,�Þ – double precision array Input/Output

Note: the second dimension of the array HESS must be at least N.

On entry: HESS need not be initialized if the (default) Cold Start option is used and will be set to
the identity.

For a Warm Start, HESS provides the initial approximation of the Hessian of the Lagrangian, i.e.,

HESS i; jð Þ � @2L x;�ð Þ
@xi@xj

, where L x; �ð Þ ¼ F xð Þ � c xð ÞT� and � is an estimate of the Lagrange

multipliers. HESS must be a positive-definite matrix.

On exit: HESS contains the Hessian of the Lagrangian at the final estimate x.

20: XðNÞ – double precision array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.
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21: IWðLENIWÞ – INTEGER array Communication Array

22: LENIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04WDF is
called.

Constraint: LENIW � 600.

23: RWðLENRWÞ – double precision array Communication Array

24: LENRW – INTEGER Input

On entry: the dimension of the array RW as declared in the (sub)program from which E04WDF is
called.

Constraint: LENRW � 600.

25: IUSERð�Þ – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04WDF, but is passed directly to routines CONFUN and OBJFUN and may
be used to pass information to and from those routines.

26: RUSERð�Þ – double precision array User Workspace

Note: the dimension of the array RUSER must be at least 1.

RUSER is not used by E04WDF, but is passed directly to routines CONFUN and OBJFUN and
may be used to pass information to and from those routines.

27: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On final exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04WDF returns with IFAIL ¼ 0 if the iterates have converged to a point x that satisfies the first-
order Kuhn–Tucker (see Section 12.2) conditions to the accuracy requested by the optional
parameter Major Optimality Tolerance (see Section 11.2), i.e., the projected gradient and active
constraint residuals are negligible at x.

The user should check whether the following four conditions are satisfied:

(i) the final value of rgNorm (see Section 12.2) is significantly less than that at the starting point;

(ii) during the final major iterations, the values of Step and Minors (see Section 12.1) are both
one;

(iii) the last few values of both rgNorm and SumInf (see Section 12.2) become small at a fast linear
rate; and

(iv) CondHz (see Section 12.1) is small.

If all these conditions hold, x is almost certainly a local minimum of (1).

One caution about ‘Optimal solutions’. Some of the variables or slacks may lie outside their bounds
more than desired, especially if scaling was requested. Max Primal infeas refers to the largest
bound infeasibility and which variable is involved. If it is too large, consider restarting with a
smaller Minor Feasibility Tolerance (say 10 times smaller) and perhaps Scale Option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value.
Broadly speaking, if
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Max Dual infeas=Max pi ¼ 10�d,

then the objective function would probably change in the dth significant digit if optimization could
be continued. If d seems too large, consider restarting with a smaller Major Optimality Tolerance.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If it
seems too large, consider restarting with a smaller Major Feasibility Tolerance.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

The initialization routine E04WCF has not been called or at least one of LENIW and LENRW is
less than 600.

IFAIL ¼ 2

An input parameter is invalid. The output message provides more details of the invalid argument.

IFAIL ¼ 3

Requested accuracy could not be achieved.

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could not

be achieved. An abnormal termination has occurred, but E04WDF is within 10�2 of satisfying the
Major Optimality Tolerance. Check that the Major Optimality Tolerance is not too small.

IFAIL ¼ 4

The problem appears to be infeasible.

When the constraints are linear, this message can probably be trusted. Feasibility is measured with
respect to the upper and lower bounds on the variables and slacks. Among all the points satisfying
the general constraints Ax� s ¼ 0 (see (5) and (6) in Section 10.2), there is apparently no point
that satisfies the bounds on x and s. Violations as small as the Minor Feasibility Tolerance are
ignored, but at least one component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a
feasible solution exists, the current linearization of the constraints may not contain a feasible point.
In an attempt to deal with this situation, when solving each QP subproblem, E04WDF is prepared to
relax the bounds on the slacks associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates for
the nonlinear constraints become large), E04WDF enters so-called ‘nonlinear elastic’ mode. The
subproblem includes the original QP objective and the sum of the infeasibilities – suitably weighted
using the Elastic Weight parameter. In elastic mode, some of the bounds on the nonlinear rows are
‘elastic’ – i.e., they are allowed to violate their specific bounds. Variables subject to elastic bounds
are known as elastic variables. An elastic variable is free to violate one or both of its original upper
or lower bounds. If the original problem has a feasible solution and the elastic weight is sufficiently
large, a feasible point eventually will be obtained for the perturbed constraints, and optimization can
continue on the subproblem. If the nonlinear problem has no feasible solution, E04WDF will tend
to determine a ‘good’ infeasible point if the elastic weight is sufficiently large. (If the elastic weight
were infinite, E04WDF would locally minimize the nonlinear constraint violations subject to the
linear constraints and bounds.)

Unfortunately, even though E04WDF locally minimizes the nonlinear constraint violations, there
may still exist other regions in which the nonlinear constraints are satisfied. Wherever possible,
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nonlinear constraints should be defined in such a way that feasible points are known to exist when
the constraints are linearized.

IFAIL ¼ 5

The problem appears to be unbounded (or badly scaled).

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable to
violate a bound. A message will give the index of the nonbasic variable. Consider adding an upper
or lower bound to the variable. Also, examine the constraints that have non-zeros in the associated
column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous
indication of unboundedness. Consider using the Scale Option.

For nonlinear problems, E04WDF monitors both the size of the current objective function and the
size of the change in the variables at each step. If either of these is very large (as judged by the
unbounded parameters (see Section 12.1)), the problem is terminated and declared UNBOUNDED.
To avoid large function values, it may be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the nonlinear functions.

The message may indicate an abnormal termination while enforcing the limit on the constraint
violations. This exit implies that the objective is not bounded below in the feasible region defined
by expanding the bounds by the value of the Violation Limit.

IFAIL ¼ 6

Iteration limit reached.

Either the Minor Iterations Limit or the Major Iterations Limit was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
restart the run using a basis file that was saved (or should have been saved) at the end of the run.

If none of the above limits have been reached, this error may mean that the problem appears to be
more nonlinear than anticipated. The current set of basic and superbasic variables have been
optimized as much as possible and a Price operation is necessary to continue, but it can’t continue
as the number of superbasic variables has already reached the limit specified by the optional
parameter Super Basics Limit.

In general, raise the Superbasics Limit s by a reasonable amount.

IFAIL ¼ 7

Numerical difficulties have been encountered and no further progress can be made.

Several circumstances could lead to this exit.

1. Subroutines OBJFUN or CONFUN could be returning accurate function values but inaccurate
gradients (or vice versa). This is the most likely cause. Study the comments given for
IFAIL ¼ 8, and do your best to ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low. For
example, accidental use of a double precision data type when double precision was intended

would lead to a relative function precision of about 10�6 instead of something like 10�15. The

default Major Optimality Tolerance of 10�6 would need to be raised to about 10�3 for
optimality to be declared (at a rather suboptimal point). Of course, it is better to revise the
function coding to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to
rather few significant figures, and gradients will probably not be available. One should specify

Function Precision t

Major Optimality Tolerance
ffiffi
t

p
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but even then, if t is as large as 10�5 or 10�6 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

4. An LU factorization of the basis has just been obtained and used to recompute the basic
variables xB, given the present values of the superbasic and nonbasic variables. A step of
‘iterative refinement’ has also been applied to increase the accuracy of xB. However, a row
check has revealed that the resulting solution does not satisfy the current constraints
Ax� s ¼ 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. If there are some linear
constraints and variables, try Scale Option 1 if scaling has not yet been used.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of Umax and Growth in Section 12.3
and set the LU Factor Tolerance to 2.0 (or possibly even smaller, but not less than 1.0).

5. The first factorization attempt will have found the basis to be structurally or numerically
singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a
certain tolerance.) The associated variables are replaced by slacks and the modified basis is
refactorized, but singularity persists. This must mean that the problem is badly scaled, or the
LU Factor Tolerance is too much larger than 1.0. This is highly unlikely to occur.

IFAIL ¼ 8

Derivative appears to be incorrect.

If the message refers to the derivatives of the objective function, then a check has been made on
some individual elements of the objective gradient array at the first point that satisfies the linear
constraints. At least one component GRAD jð Þ is being set to a value that disagrees markedly with

its associated forward-difference estimate @F
@xj

. (The relative difference between the computed and

estimated values is 1.0 or more.) This exit is a safeguard, since E04WDF will usually fail to make
progress when the computed gradients are seriously inaccurate. In the process it may expend
considerable effort before terminating with IFAIL ¼ 7.

Check the function and gradient computation very carefully in OBJFUN. A simple omission could

explain everything. If F or a component @F
@xj

is very large, then give serious thought to scaling the

function or the nonlinear variables.

If you feel certain that the computed GRAD jð Þ is correct (and that the forward-difference estimate
is therefore wrong), you can specify Verify Level 0 to prevent individual elements from being
checked. However, the optimization procedure may have difficulty.

If the message refers to derivatives of the constraints, then at least one of the computed constraint
derivatives is significantly different from an estimate obtained by forward-differencing the vector
c xð Þ. Follow the advice given above, trying to ensure that the arrays CCON and CJAC are being
set correctly in CONFUN.

IFAIL ¼ 9

Undefined user-supplied function.

The user has indicated that the problem functions are undefined by assigning the value
MODE ¼ �1 on exit from OBJFUN or CONFUN. E04WDF attempts to evaluate the problem
functions closer to a point at which the functions are already known to be defined. This exit occurs
if E04WDF is unable to find a point at which the functions are defined. This will occur in the case
of:

- undefined functions with no recovery possible;

- undefined functions at the first point;

- undefined functions at the first feasible point; or

- undefined functions when checking derivatives.
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IFAIL ¼ 10

User requested termination.

The user has indicated the wish to terminate solution of the current problem by setting MODE to a
value < �1 on exit from OBJFUN or CONFUN.

IFAIL ¼ 11

Internal memory allocation failed when attempting to obtain the required workspace. Please contact
NAG.

IFAIL ¼ 12

Internal memory allocation was insufficient. Please contact NAG.

IFAIL ¼ 13

An error has occurred in the basis package, perhaps indicating incorrect setup of arrays. Set the
optional argument Print File (see Section 11.2) and examine the output carefully for further
information.

IFAIL ¼ 14

An unexpected error has occurred. Set the optional argument Print File (see Section 11.2) and
examine the output carefully for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution to an accuracy
of approximately Major Optimality Tolerance (see Section 11.2).

8 Further Comments

This section describes the final output produced by E04WDF. Intermediate and other output are given in
Section 12.

8.1 The Final Output

If Print File > 0, the final output, including a listing of status of every variable and constraint will be sent
to the channel numbers associated with Print File. The following describes the output for each variable.
A full stop (.) is printed for any numerical value that is zero.

Variable gives the name (Variable) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than the Feasibility Tolerance (see Section 11.2), State will be ++ or --
respectively. (The latter situation can occur only when there is no feasible point for
the bounds and linear constraints.)

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables might
change, giving a genuine alternative solution. However, if there are any
degenerate variables (labelled D), the actual change might prove to be zero,
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since one of them could encounter a bound immediately. In either case the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Lagr multiplies is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless BLðjÞ � �bigbnd and BUðjÞ � bigbnd, in which case the entry will be
blank. If x is optimal, the multiplier should be non-negative if State is LL and
non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
BLðjÞ and BUðjÞ. A blank entry indicates that the associated variable is not
bounded (i.e., BLðjÞ � �bigbnd and BUðjÞ � bigbnd).

The meaning of the output for linear and nonlinear constraints is the same as that given above for
variables, with BLðjÞ and BUðjÞ replaced by BLðnþ jÞ and BUðnþ jÞ respectively, and with the
following changes in the heading:

Linear constrnt gives the name (lincon) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

Nonlin constrnt gives the name (nlncon) and index (j� nL), for j ¼ nL þ 1; nL þ 2; . . . ; nL þ nN

of the nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

This is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization of the
nonlinear function

F xð Þ ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3

subject to the bounds

1 � x1 � 5

1 � x2 � 5

1 � x3 � 5

1 � x4 � 5

to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20,

and to the nonlinear constraints

x2
1 þ x2

2 þ x23 þ x24 � 40,

x1x2x3x4 � 25.

The initial point, which is infeasible, is

x0 ¼ 1; 5; 5; 1ð ÞT ,
and F x0ð Þ ¼ 16.
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The optimal solution (to five figures) is

x� ¼ 1:0; 4:7430; 3:8211; 1:3794ð ÞT ,

and F x�ð Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the

Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,

the results produced may not be identical for all implementations.

* E04WDF Example Program Text
* Mark 21 Release. NAG Copyright 2004.

IMPLICIT NONE
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NCLMAX, NCNMAX
PARAMETER (NMAX=10,NCLMAX=10,NCNMAX=10)
INTEGER LDA, LDCJ, LDH
PARAMETER (LDA=NCLMAX,LDCJ=NCNMAX,LDH=NMAX)
INTEGER LENIW, LENRW
PARAMETER (LENIW=600,LENRW=600)

* .. Local Scalars ..
DOUBLE PRECISION OBJF
INTEGER I, IFAIL, J, MAJITS, N, NCLIN, NCNLN

* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), BL(NMAX+NCLMAX+NCNMAX),

+ BU(NMAX+NCLMAX+NCNMAX), CCON(NCNMAX),
+ CJAC(LDCJ,NMAX), CLAMDA(NMAX+NCLMAX+NCNMAX),
+ GRAD(NMAX), HESS(LDH,NMAX), RUSER(1), RW(LENRW),
+ X(NMAX)
INTEGER ISTATE(NMAX+NCLMAX+NCNMAX), IUSER(1), IW(LENIW)

* .. External Subroutines ..
EXTERNAL CONFUN, E04WCF, E04WDF, E04WFF, E04WGF, OBJFUN

* .. Executable Statements ..
WRITE (NOUT,*) ’E04WDF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NCLIN, NCNLN
IF (N.LE.NMAX .AND. NCLIN.LE.NCLMAX .AND. NCNLN.LE.NCNMAX) THEN

*
* Read A, BL, BU and X from data file

IF (NCLIN.GT.0) READ (NIN,*) ((A(I,J),J=1,N),I=1,NCLIN)
READ (NIN,*) (BL(I),I=1,N+NCLIN+NCNLN)
READ (NIN,*) (BU(I),I=1,N+NCLIN+NCNLN)
READ (NIN,*) (X(I),I=1,N)

*
* Call E04WCF to initialise E04WDF.

IFAIL = -1
CALL E04WCF(IW,LENIW,RW,LENRW,IFAIL)

*
* By default E04WDF does not print monitoring
* information. Set the print file unit or the summary
* file unit to get information.

CALL E04WGF(’Print file’,NOUT,IW,RW,IFAIL)
*
* Solve the problem.

IFAIL = -1
CALL E04WDF(N,NCLIN,NCNLN,LDA,LDCJ,LDH,A,BL,BU,CONFUN,OBJFUN,

+ MAJITS,ISTATE,CCON,CJAC,CLAMDA,OBJF,GRAD,HESS,X,IW,
+ LENIW,RW,LENRW,IUSER,RUSER,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99999) IFAIL
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,99998) OBJF
WRITE (NOUT,99997) (X(I),I=1,N)

END IF
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*
END IF
STOP

*
99999 FORMAT (1X,’On exit from E04WDF, IFAIL = ’,I5)
99998 FORMAT (1X,’Final objective value = ’,F11.3)
99997 FORMAT (1X,’Optimal X = ’,7F9.2)

END

SUBROUTINE OBJFUN(MODE,N,X,OBJF,GRAD,NSTATE,IUSER,RUSER)
* Routine to evaluate objective function and its 1st derivatives.
* .. Parameters ..

DOUBLE PRECISION ONE, TWO
PARAMETER (ONE=1.0D0,TWO=2.0D0)

* .. Scalar Arguments ..
DOUBLE PRECISION OBJF
INTEGER MODE, N, NSTATE

* .. Array Arguments ..
DOUBLE PRECISION GRAD(N), RUSER(*), X(N)
INTEGER IUSER(*)

* .. Executable Statements ..
IF (MODE.EQ.0 .OR. MODE.EQ.2) OBJF = X(1)*X(4)*(X(1)+X(2)+X(3)) +

+ X(3)
*

IF (MODE.EQ.1 .OR. MODE.EQ.2) THEN
GRAD(1) = X(4)*(TWO*X(1)+X(2)+X(3))
GRAD(2) = X(1)*X(4)
GRAD(3) = X(1)*X(4) + ONE
GRAD(4) = X(1)*(X(1)+X(2)+X(3))

END IF
*

RETURN
END

*
SUBROUTINE CONFUN(MODE,NCNLN,N,LDCJ,NEEDC,X,CCON,CJAC,NSTATE,

+ IUSER,RUSER)
* Routine to evaluate the nonlinear constraints and their 1st
* derivatives.
* .. Parameters ..

DOUBLE PRECISION ZERO, TWO
PARAMETER (ZERO=0.0D0,TWO=2.0D0)

* .. Scalar Arguments ..
INTEGER LDCJ, MODE, N, NCNLN, NSTATE

* .. Array Arguments ..
DOUBLE PRECISION CCON(*), CJAC(LDCJ,*), RUSER(*), X(N)
INTEGER IUSER(*), NEEDC(*)

* .. Local Scalars ..
INTEGER I, J

* .. Executable Statements ..
IF (NSTATE.EQ.1) THEN

* First call to CONFUN. Set all Jacobian elements to zero.
* Note that this will only work when ’Derivative Level = 3’
* (the default; see Section 11.2).

DO 40 J = 1, N
DO 20 I = 1, NCNLN

CJAC(I,J) = ZERO
20 CONTINUE
40 CONTINUE

END IF
*

IF (NEEDC(1).GT.0) THEN
IF (MODE.EQ.0 .OR. MODE.EQ.2) CCON(1) = X(1)**2 + X(2)**2 +

+ X(3)**2 + X(4)**2
IF (MODE.EQ.1 .OR. MODE.EQ.2) THEN

CJAC(1,1) = TWO*X(1)
CJAC(1,2) = TWO*X(2)
CJAC(1,3) = TWO*X(3)
CJAC(1,4) = TWO*X(4)

END IF
END IF

*
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IF (NEEDC(2).GT.0) THEN
IF (MODE.EQ.0 .OR. MODE.EQ.2) CCON(2) = X(1)*X(2)*X(3)*X(4)
IF (MODE.EQ.1 .OR. MODE.EQ.2) THEN

CJAC(2,1) = X(2)*X(3)*X(4)
CJAC(2,2) = X(1)*X(3)*X(4)
CJAC(2,3) = X(1)*X(2)*X(4)
CJAC(2,4) = X(1)*X(2)*X(3)

END IF
END IF

*
RETURN
END

9.2 Program Data

E04WDF Example Program Data
4 1 2 : N, NCLIN and NCNLN
1.0 1.0 1.0 1.0 : Matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 : Lower bounds BL
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 : Upper bounds BU
1.0 5.0 5.0 1.0 : Initial vector X

9.3 Program Results

E04WDF Example Program Results

Parameters
==========

Files
-----
Solution file.......... 0 Old basis file ........ 0

(Print file)........... 6
Insert file............ 0 New basis file ........ 0

(Summary file)......... 0
Punch file............. 0 Backup basis file...... 0
Load file.............. 0 Dump file.............. 0

Frequencies
-----------
Print frequency........ 100 Check frequency........ 60

Save new basis map..... 100
Summary frequency...... 100 Factorization frequency 50

Expand frequency....... 10000

QP subproblems
--------------
QPsolver Cholesky......
Scale tolerance........ 0.900 Minor feasibility tol.. 1.00E-06

Iteration limit........ 10000
Scale option........... 0 Minor optimality tol.. 1.00E-06

Minor print level...... 1
Crash tolerance........ 0.100 Pivot tolerance........ 1.11E-15

Partial price.......... 1
Crash option........... 3 Elastic weight......... 1.00E+04

Prtl price section ( A) 4
New superbasics........ 99

Prtl price section (-I) 3

The SQP Method
--------------
Minimize............... Cold start.............

Proximal Point method.. 1
Nonlinear objectiv vars 4 Major optimality tol... 2.00E-06

Function precision..... 1.72E-13
Unbounded step size.... 1.00E+20 Superbasics limit...... 4

Difference interval.... 4.15E-07
Unbounded objective.... 1.00E+15 Hessian dimension...... 4

Central difference int. 5.57E-05
Major step limit....... 2.00E+00 Derivative linesearch..
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Derivative option...... 3
Major iterations limit. 1000 Linesearch tolerance... 0.90000

Verify level........... 0
Minor iterations limit. 500 Penalty parameter...... 0.00E+00

Major Print Level...... 1

Hessian Approximation
---------------------
Full-Memory Hessian.... Hessian updates........ 99999999

Hessian frequency...... 99999999

Hessian flush.......... 99999999

Nonlinear constraints
---------------------
Nonlinear constraints.. 2 Major feasibility tol.. 1.00E-06

Violation limit........ 1.00E+06
Nonlinear Jacobian vars 4

Miscellaneous
-------------
LU factor tolerance.... 1.10 LU singularity tol..... 1.05E-08

Timing level........... 0
LU update tolerance.... 1.10 LU swap tolerance...... 1.03E-04

Debug level............ 0
LU partial pivoting... eps (machine precision) 1.11E-16

System information..... No

Nonlinear constraints 2 Linear constraints 1
Nonlinear variables 4 Linear variables 0
Jacobian variables 4 Objective variables 4
Total constraints 3 Total variables 4

The user has defined 8 out of 8 constraint gradients.
The user has defined 4 out of 4 objective gradients.

Cheap test of user-supplied problem derivatives...

The constraint gradients seem to be OK.

--> The largest discrepancy was 1.84E-07 in constraint 6

The objective gradients seem to be OK.

Gradient projected in one direction 4.99993000077E+00
Difference approximation 4.99993303560E+00

Itns Major Minors Step nCon Feasible Optimal MeritFunction L+U
BSwap nS condHz Penalty

2 0 2 1 1.7E+00 2.8E+00 1.6000000E+01 7
2 1.0E+00 _ r

4 1 2 1.0E+00 2 1.3E-01 3.2E-01 1.7726188E+01 8
1 6.2E+00 8.3E-02 _n r

5 2 1 1.0E+00 3 3.7E-02 1.7E-01 1.7099571E+01 7
1 2.0E+00 8.3E-02 _s

6 3 1 1.0E+00 4 2.2E-02 1.1E-02 1.7014005E+01 7
1 1.8E+00 8.3E-02 _

7 4 1 1.0E+00 5 1.5E-04 6.0E-04 1.7014018E+01 7
1 1.8E+00 9.2E-02 _

8 5 1 1.0E+00 6 (3.3E-07) 2.3E-05 1.7014017E+01 7
1 1.9E+00 3.6E-01 _

9 6 1 1.0E+00 7 (4.2E-10)(2.4E-08) 1.7014017E+01 7
1 1.9E+00 3.6E-01 _

E04WDF EXIT 0 -- finished successfully
E04WDF INFO 1 -- optimality conditions satisfied

Problem name NLP
No. of iterations 9 Objective value 1.7014017287E+01
No. of major iterations 6 Linear objective 0.0000000000E+00
Penalty parameter 3.599E-01 Nonlinear objective 1.7014017287E+01
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No. of calls to funobj 8 No. of calls to funcon 8
No. of superbasics 1 No. of basic nonlinears 2
No. of degenerate steps 0 Percentage 0.00
Max x 2 4.7E+00 Max pi 2 5.5E-01
Max Primal infeas 0 0.0E+00 Max Dual infeas 3 4.8E-08
Nonlinear constraint violn 2.7E-09

Variable State Value Lower bound Upper bound Lagr
multiplier Slack

variable 1 LL 1.000000 1.000000 5.000000
1.087871 .
variable 2 FR 4.743000 1.000000 5.000000 .

0.2570
variable 3 FR 3.821150 1.000000 5.000000 .

1.179
variable 4 FR 1.379408 1.000000 5.000000 .

0.3794

Linear constrnt State Value Lower bound Upper bound Lagr
multiplier Slack

lincon 1 FR 10.94356 None 20.00000 .
9.056

Nonlin constrnt State Value Lower bound Upper bound Lagr
multiplier Slack

nlncon 1 UL 40.00000 None 40.00000 -
0.1614686 -0.2700E-08

nlncon 2 LL 25.00000 25.00000 None
0.5522937 -0.2215E-08

On exit from E04WDF, IFAIL = 0
Final objective value = 17.014
Optimal X = 1.00 4.74 3.82 1.38

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed

description of the algorithm which may be needed in order to understand Sections 11 and 12. Section 11

describes the optional parameters which may be set by calls to E04WFF, E04WGF and/or E04WHF. Section

12 describes the quantities which can be requested to monitor the course of the computation.

10 Algorithmic Details

Here we summarize the main features of the SQP algorithm used in E04WDF and introduce some
terminology used in the description of the subroutine and its arguments. The SQP algorithm is fully
described in Gill et al. (2002).

10.1 Constraints and Slack Variables

The upper and lower bounds on the m components of c xð Þ and ALx are said to define the general

constraints of the problem. E04WDF converts the general constraints to equalities by introducing a set of

slack variables s ¼ s1; s2; . . . ; smð ÞT . For example, the linear constraint 5 � 3x1 þ 3x2 � þ1 is replaced
by 2x1 þ 3x2 � s1 ¼ 0 together with the bounded slack 5 � s1 � þ1. The minimization problem (1) can
therefore be written in the equivalent form

minimize
x;s

F xð Þ subject to
c xð Þ
ALx

� �
� s ¼ 0; l � x

s

� �
� u. ð2Þ

The general constraints become the equalities c xð Þ � sN ¼ 0 and ALx� sL ¼ 0, where sL and sN are
known as the linear and nonlinear slacks.
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10.2 Major Iterations

The basic structure of the SQP algorithm involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point that satisfies
the first-order conditions for optimality. At each iterate a QP subproblem is used to generate a search
direction towards the next iterate xkþ1. The constraints of the subproblem are formed from the linear
constraints ALx� sL ¼ 0 and the nonlinear constraint linearization

c xkð Þ þ c0 xkð Þ x� xkð Þ � sN ¼ 0, ð3Þ

where c0 xkð Þ denotes the Jacobian matrix, whose elements are the first derivatives of c xð Þ evaluated at xk.
The QP constraints therefore comprise the m linear constraints

c0 xkð Þx �sN ¼ �c xkð Þ þ c0 xkð Þxk,
ALx �sL ¼ 0,

ð4Þ

where x and s are bounded above and below by u and l as before. If the m by n matrix A and m-vector b
are defined as

A ¼ c0 xkð Þ
AL

� �
and b ¼ �c xkð Þ þ c0 xkð Þxk

0

� �
, ð5Þ

then the QP subproblem can be written as

minimize
x;s

q xð Þ subject to Ax� s ¼ b, l � x
s

� �
� u, ð6Þ

where q xð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).

10.3 Minor Iterations

Solving the QP subproblem is itself an iterative procedure. The iterations of the QP solver are the minor

iterations of the SQP method. At each minor iteration, the constraints Ax� s ¼ b are (conceptually)
partitioned into the form

BxB þ SxS þNxN ¼ b, ð7Þ
where the basic matrix B is square and nonsingular. The elements of xB, xS and xN are called the basic,
superbasic and nonbasic variables respectively; they are a permutation of the elements of x and s. At a
QP subproblem, the basic and superbasic variables will lie somewhere between their bounds, while the
nonbasic variables will normally be equal to one of their bounds. At each iteration, xS is regarded as a set
of independent variables that are free to move in any desired direction, namely one that will improve the
value of the QP objective (or the sum of infeasibilities). The basic variables are then adjusted in order to
ensure that x; sð Þ continues to satisfy Ax� s ¼ b. The number of superbasic variables (nS , say) therefore
indicates the number of degrees of freedom remaining after the constraints have been satisfied. In broad
terms, nS is a measure of how nonlinear the problem is. In particular, nS will always be zero for LP
problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ b are the dual variables �. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj. The reduced gradients for the variables x are the

quantities g�AT�, where g is the gradient of the QP objective, and the reduced gradients for the slacks
are the dual variables �. The QP subproblem is optimal if dj � 0 for all nonbasic variables at their lower

bounds, dj � 0 for all nonbasic variables at their upper bounds, and dj ¼ 0 for other variables, including

superbasics. In practice, an approximate QP solution x̂xk; ŝsk; �̂�kð Þ is found by relaxing these conditions.

10.4 The Merit Function

After a QP subproblem has been solved, new estimates of the solution are computed using a line search on
the augmented Lagrangian merit function
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M x; s; �ð Þ ¼ F xð Þ � �T c xð Þ � sNð Þ þ 1

2
c xð Þ � sNð ÞTD c xð Þ � sNð Þ, ð8Þ

where D is a diagonal matrix of penalty parameters Dii � 0ð Þ. If xk; sk; �kð Þ denotes the current solution
estimate and x̂xk; ŝsk; �̂�kð Þ denotes the QP solution, the line search determines a step �k 0 < �k � 1ð Þ such
that the new point

xkþ1

skþ1

�kþ1

0
@

1
A ¼

xk

sk
�k

0
@

1
Aþ �k

x̂xk � xk
ŝsk � sk
�̂�k � �k

0
@

1
A ð9Þ

gives a sufficient decrease in the merit function (see (8)). When necessary, the penalties in D are increased
by the minimum-norm perturbation that ensures descent for M (see Gill et al. (1992)). sN is adjusted to
minimize the merit function as a function of s prior to the solution of the QP subproblem (see Gill et al.
(1986c) and Eldersveld (1991)).

10.5 Treatment of Constraint Infeasibilities

E04WDF makes explicit allowance for infeasible constraints. First, infeasible linear constraints are
detected by solving the linear program

minimize
x;v;w

eT vþ wð Þ subject to l � x
ALx� vþ w

� �
� u, u � 0, w � 0, ð10Þ

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded from l and u.
This is equivalent to minimizing the sum of the general linear constraint violations subject to the bounds
on x. (The sum is the ‘1-norm of the linear constraint violations. In the linear programming literature, the
approach is called elastic programming.)

The linear constraints are infeasible if the optimal solution of (10) has v 6¼ 0 or w 6¼ 0. E04WDF then
terminates without computing the nonlinear functions.

Otherwise, all subsequent iterates satisfy the linear constraints. (Such a strategy allows linear constraints to
be used to define a region in which the functions can be safely evaluated.) E04WDF proceeds to solve
nonlinear problems as given, using search directions obtained from the sequence of QP subproblems (see
(6)).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variable � for the nonlinear
constraints become large), E04WDF enters ‘elastic’ mode and thereafter solves the problem

minimize
x;v;w

F xð Þ þ �eT vþ wð Þ subject to l �
x

c xð Þ � vþ w
ALx

0
@

1
A � u, v � 0, w � 0, ð11Þ

where � is a nonnegative parameter (the elastic weight), and F xð Þ þ �eT vþ wð Þ is called a composite

objective (the ‘1 penalty function for the nonlinear constraints).

The value of � may increase automatically by multiples of 10 if the optimal u and w continue to be non-
zero. If � is sufficiently large, this is equivalent to minimizing the sum of the nonlinear constraint
violations subject to the linear constraints and bounds.

The initial value of � is controlled by the optional parameters Elastic Mode and Elastic Weight.

11 Optional Parameters

Several optional parameters in E04WDF define choices in the problem specification or the algorithm logic.
In order to reduce the number of formal parameters of E04WDF these optional parameters have associated
default values that are appropriate for most problems. Therefore, the user need only specify those optional
parameters whose values are to be different from their default values.

The remainder of this section can be skipped by users who wish to use the default values for all optional
parameters. A complete list of optional parameters and their default values is given in Section 11.1.
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Optional parameters may be specified by calling one, or more, of the routines E04WEF, E04WFF and
E04WGF prior to a call to E04WDF.

E04WEF reads options from an external options file, with Begin and End as the first and last lines
respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 5

End

The call

CALL E04WEF (IOPTNS, IW, RW, IFAIL)

can then be used to read the file on unit IOPTNS. IFAIL will be zero on successful exit. E04WEF should
be consulted for a full description of this method of supplying optional parameters.

E04WFF, E04WGF or E04WHF can be called to supply options directly, one call being necessary for each
optional parameter. E04WFF, E04WGF or E04WHF should be consulted for a full description of this
method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04WDF (unless they define invalid values) and so remain in effect
for subsequent calls to E04WDF, unless altered by the user.

11.1 Optional parameter checklist and default values

The following list gives the valid options. For each option, we give the keyword, any essential optional
qualifiers and the default value. A definition for each option can be found in Section 11.2. The minimum
abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined, the
qualifier may be omitted. The letter a denotes a phrase (character string) that qualifies an option. The
letters i and r denote INTEGER and double precision values required with certain options. The number �
is a generic notation for machine precision (see X02AJF), and �R denotes the relative precision of the
objective function (the optional parameter Function Precision; see below).

Optional Parameters Default Values

Backup Basis File Default ¼ 0
Central Difference Interval Default ¼ �4=15

Check Frequency Default ¼ 60
Cold Start Default ¼ Cold Start
Crash Option Default ¼ 3
Crash Tolerance Default ¼ 0:1
Derivative Level Default ¼ 3
Defaults
Derivative Linesearch Default
Difference Interval Default ¼ �0:4

Dump File Default ¼ 0
Elastic Mode Default ¼ No
Elastic Weight Default ¼ 104

Expand Frequency Default ¼ 10000
Factorisation Frequency Default ¼ 50
Feasibility Tolerance Default ¼ 1:0D� 6
Feasible Point
Function Precision Default ¼ �0:8

Hessian Full Memory Default ¼ Full if n1 � 75
Hessian Limited Memory
Hessian Frequency Default ¼ 99999999
Hessian Updates Default ¼ 99999999
Insert File Default ¼ 0
Infinite Bound Size Default ¼ 1020

Linesearch Tolerance Default ¼ 0:9
List Default ¼ Nolist
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Load File Default ¼ 0
LU Complete Pivoting
LU Density Tolerance Default ¼ 0:6
LU Factor Tolerance Default ¼ 1:01
LU Partial Pivoting Default
LU Rook Pivoting
LU Singularity Tolerance Default ¼

ffiffi
�

p

LU Update Tolerance Default ¼ 1:01
Major Feasibility Tolerance Default ¼ 1:0D� 6
Major Iterations Limit Default ¼ max 1000;mf g
Major Optimality Tolerance Default ¼ 2:0D� 6
Major Print Level Default ¼ 00001
Major Step Limit Default ¼ 2:0
Maximize
Minimize Default
Minor Feasibility Tolerance Default ¼ 1:0D� 6
Minor Iterations Limit Default ¼ 500
Minor Print Level Default ¼ 1
New Basis File Default ¼ 0
New Superbasics Limit Default ¼ 99
Nolist
Nonderivative Linesearch
Old Basis File Default ¼ 0
Partial Price Default ¼ 1
Pivot Tolerance Default ¼ 10� �
Print File Default ¼ 0
Print Frequency Default ¼ 100
Proximal Point Method Default ¼ 1
Punch File Default ¼ 0
Save Frequency Default ¼ 100
Scale Option Default ¼ 0
Scale Tolerance Default ¼ 0:9
Solution File Default ¼ 0
Start Constraint Check At Variable Default ¼ 1
Start Objective Check At Variable Default ¼ 1
Stop Constraint Check At Variable Default ¼ n
Stop Objective Check At Variable Default ¼ n
Summary File Default ¼ 0
Summary Frequency Default ¼ 100
Superbasics Limit Default ¼ min 500; n1 þ 1ð Þ
Suppress Parameters
Timing Level Default ¼ 0
Unbounded Objective Default ¼ 1:0Dþ 15
Unbounded Step Size Default ¼ 1:0Dþ 20
Verify Level Default ¼ 0
Violation Limit Default ¼ 1:0Dþ 6
Warm Start

11.2 Description of the optional parameters

Central Difference Interval r Default ¼ �4=15

When Derivative Level < 3, the central-difference interval r is used near an optimal solution to obtain
more accurate (but more expensive) estimates of gradients. Twice as many function evaluations are

required compared to forward differencing. The interval used for the jth variable hj ¼ r 1þ xj
�� ��� �

. The

resulting derivative estimates should be accurate to O r2
� �

, unless the functions are badly scaled.
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Check Frequency i Default ¼ 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the
current solution x satisfies the general linear constraints (the linear constraints and the linearized nonlinear
constraints, if any). The constraints are of the form Ax� s ¼ b, where s is the set of slack variables. To
perform the numerical test, the residual vector r ¼ b�Axþ s is computed. If the largest component of r
is judged to be too large, the current basis is refactorized and the basic variables are recomputed to satisfy
the general constraints more accurately.

Check Frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Cold Start Default ¼ Cold Start
Warm Start

This option controls the specification of the initial working set in both the procedure for finding a feasible
point for the linear constraints and bounds and in the first QP subproblem thereafter. With a Cold Start,
the first working set is chosen by E04WDF based on the values of the variables and constraints at the
initial point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within Crash Tolerance; see below).

With a Warm Start, the user must set the ISTATE array and define CLAMDA and HESS as discussed in
Section 5. ISTATE values associated with bounds and linear constraints determine the initial working set
of the procedure to find a feasible point with respect to the bounds and linear constraints. ISTATE values
associated with nonlinear constraints determine the initial working set of the first QP subproblem after such
a feasible point has been found. E04WDF will override the user’s specification of ISTATE if necessary, so
that a poor choice of the working set will not cause a fatal error. For instance, any elements of ISTATE
which are set to �2, �1 or 4 will be reset to zero, as will any elements which are set to 3 when the
corresponding elements of BL and BU are not equal. A warm start will be advantageous if a good
estimate of the initial working set is available – for example, when E04WDF is called repeatedly to solve
related problems.

Crash Option i Default ¼ 3
Crash Tolerance r Default ¼ 0:1

If optional Cold Start, an internal Crash procedure is used to select an initial basis from certain rows and
columns of the constraint matrix A �Ið Þ. The Crash Option i determines which rows and columns of
A are eligible initially, and how many times the Crash procedure is called. Columns of �I are used to pad
the basis where necessary.

i Meaning
0 The initial basis contains only slack variables: B ¼ I.
1 The Crash procedure is called once, looking for a triangular basis in all rows and columns of the

matrix A.
2 The Crash procedure is called twice (if there are nonlinear constraints). The first call looks for a

triangular basis in linear rows, and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first major iteration and the Crash
procedure is called again to find a triangular basis in the nonlinear rows (retaining the current basis
for linear rows).

3 The Crash procedure is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call treats
nonlinear rows before the first major iteration.

If i � 1, certain slacks on inequality rows are selected for the basis first. (If i � 2, numerical values are
used to exclude slacks that are close to a bound). The Crash procedure then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned to
‘pivot’ on a particular row if the column contains a suitably large element in a row that has not yet been
assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.

The Crash Tolerance r allows the starting Crash procedure to ignore certain ‘small’ non-zeros in each
column of A. If amax is the largest element in column j, other non-zeros of aij in the columns are

ignored if aij
�� �� � amax � r. (To be meaningful, r should be in the range 0 � r < 1.)
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When r > 0:0, the basis obtained by the Crash procedure may not be strictly triangular, but it is likely to
be nonsingular and almost triangular. The intention is to obtain a starting basis containing more columns
of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some problems.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Derivative Level i Default ¼ 3

Derivative Level specifies which nonlinear function gradients are known analytically and will be supplied
to E04WDF by the user subroutines OBJFUN and CONFUN.

i Meaning
3 All objective constraint gradients are known.
2 All constraint gradients are known, but some or all components of the objective gradient are

unknown.
1 The objective gradient is known, but some or all of the constraint gradients are unknown.
0 Some components of the objective gradient are unknown and some of the constraint gradients are

unknown.

The value i ¼ 3 should be used whenever possible. It is the most reliable and will usually be the most
efficient.

If i ¼ 0 or 2, E04WDF will estimate the missing components of the objective gradient, using finite
differences. This may simplify the coding of subroutine OBJFUN. However, it could increase the total
run-time substantially (since a special call to OBJFUN is required for each missing element), and there is
less assurance that an acceptable solution will be located. If the nonlinear variables are not well scaled, it
may be necessary to specify a nonstandard Difference Interval (see below).

If i ¼ 0 or 1, E04WDF will estimate missing elements of the Jacobian. For each column of the Jacobian,
one call to CONFUN is needed to estimate all missing elements in that column, if any. If the sparsity
pattern of the Jacobian happens to be

� � �
? ?

� ?
� �

0
BB@

1
CCA

where � indicates known gradients and ? indicates unknown elements, E04WDF will use one call to
CONFUN to estimate the missing element in column 2, and another call to estimate both missing elements
in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences. Twice as many calls to OBJFUN
and CONFUN are needed. (This is not under the user’s control.)

Derivative Linesearch Default
Nonderivative Linesearch

At each major iteration a line search is used to improve the merit function. A Derivative Linesearch uses
safeguarded cubic interpolation and requires both function and gradient values to compute estimates of the
step �k. If some analytic derivatives are not provided, or a Nonderivative Linesearch is specified,
E04WDF employs a line search based upon safeguarded quadratic interpolation, which does not require
gradient evaluations.

A nonderivative line search can be slightly less robust on difficult problems, and it is recommended that
the default be used if the functions and derivatives can be computed at approximately the same cost. If the
gradients are very expensive relative to the functions, a nonderivative line search may give a significant
decrease in computation time.

Difference Interval r Default ¼ �0:4

This alters the interval r that is used to estimate gradients by forward differences in the following
circumstances:
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in the interval (‘cheap’) phase of verifying the problem derivatives;

for verifying the problem derivatives;

for estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of x to the value

xj þ r 1þ xj

�� ��� �
, and then evaluating F xð Þ or c xð Þ at the perturbed point. The resulting gradient estimates

should be accurate to O rð Þ unless the functions are badly scaled. Judicious alteration of r may sometimes
lead to greater accuracy.

Dump File i1 Default ¼ 0
Load File i2 Default ¼ 0

Dump File and Load File are similar to Punch File and Insert File, but they record solution information
in a manner that is more direct and more easily modified. A full description of information recorded in
Dump File and Load File is given in Gill et al. (1999).

If i1 > 0, the last solution obtained will be output to the file with unit number i1.

If i2 > 0, the Load File containing basis information will be read. The file will usually have been output
previously as a Dump File. The file will not be accessed if an Old Basis File or an Insert File is
specified.

Elastic Mode Default ¼ No

Normally E04WDF initiates elastic mode only when it seems necessary. Option Yes causes elastic mode
to be entered from the beginning.

Elastic Weight r Default ¼ 104

This keyword determines the intial weight � associated with the problem (11) (see Section 10.5).

At major iteration k, if elastic mode has not yet started, a scale factor �k ¼ 1þ g xkð Þk k1 is defined from

the current objective gradient. Elastic mode is then started if the QP subproblem is infeasible, or the QP
dual variables are larger in magnitude than �kr. The QP is re-solved in elastic mode with � ¼ �kr.

Thereafter, major iterations continue in elastic mode until they converge to a point that is optimal for (11)
(see Section 10.5). If the point is feasible for v ¼ w ¼ 0ð Þ, it is declared locally optimal. Otherwise, � is
increased by a factor of 10 and major iterations continue.

Expand Frequency i Default ¼ 10000

This option is part of the anti-cycling procedure designed to make progress even on highly degenerate
problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating the
bounds on the variables by a small amount. Suppose that the Minor Feasibility Tolerance is �. Over a
period of i iterations, the tolerance actually used by E04WDF increases from 0:5� to � (in steps of 0:5�=i).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can occur only when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most of which are
eliminated during a resetting procedure). However, it also diminishes the freedom to choose a large pivot
element (see Pivot Tolerance).

Factorisation Frequency i Default ¼ 50

At most i basis changes will occur between factorizations of the basis matrix.

With linear programs, the basis factors are usually updated every iteration. The default i is reasonable for
typical problems. Higher values up to i ¼ 100 (say) may be more efficient on well scaled problems.
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When the objective function is nonlinear, fewer basis updates will occur as an optimum is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a test
is made regularly (according to the Check Frequency) to ensure that the general constraints are satisfied.
If necessary the basis will be refactorized before the limit of i updates is reached.

Feasibility Tolerance i Default ¼ 1:0D� 6

See Minor Feasiblity Tolerance.

Function Precision r Default ¼ �0:8

The relative function precision �r is intended to be a measure of the relative accuracy with which the
functions can be computed. For example, if F xð Þ is computed as 1000.56789 for some relevant x and if
the first 6 significant digits are known to be correct, the appropriate value for �r would be 1:0D� 6.

(Ideally the functions F xð Þ or ci xð Þ should have magnitude of order 1. If all functions are substantially
less than 1 in magnitude, �r should be the absolute precision. For example, if F xð Þ ¼ 1:23456789D� 4
at some point and if the first 6 significant digits are known to be correct, the appropriate value for �r would
be 1:0D� 10.)

The default value of �r is appropriate for simple analytic functions.

In some cases the function values will be the result of extensive computation, possibly involving a costly
iterative procedure that can provide few digits of precision. Specifying an appropriate Function Precision
may lead to savings, by allowing the line search procedure to terminate when the difference between
function values along the search direction becomes as small as the absolute error in the values.

Hessian Full Memory Default ¼ Full if n1 � 75
Hessian Limited Memory

These options select the method for storing and updating the approximate Hessian. (E04WDF uses a
quasi-Newton approximation to the Hessian of the Lagrangian. A BFGS update is applied after each major
iteration.)

If Hessian Full Memory is specified, the approximate Hessian is treated as a dense matrix and the BFGS
updates are applied explicitly. This option is most efficient when the number of nonlinear variables n1 is
not too large (say, less than 75). In this case, the storage requirement is fixed and one can expect 1-step Q-
superlinear convergence to the solution.

Hessian Limited Memory should be used on problems where n1 is very large. In this case a limited-
memory procedure is used to update a diagonal Hessian approximation Hr a limited number of times.
(Updates are accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has
been reset to their diagonal.)

Hessian Frequency i Default ¼ 99999999

If Hessian Full Memory is selected and i BFGS updates have already been carried out, the Hessian
approximation is reset to the identity matrix. (For certain problems, occasional resets may improve
convergence, but in general they should not be necessary.)

Hessian Full Memory and Hessian Frequency ¼ 20 have a similar effect to Hessian Limited Memory
and Hessian Updates ¼ 20 (except that the latter retains the current diagonal during resets).

Hessian Updates i Default ¼ 99999999

If Hessian Limited Memory is selected and i BFGS updates have already been carried out, all but the
diagonal elements of the accumulated updates are discarded and the updating process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate Hessian. However,
the more vectors stored, the greater the cost of each QP iteration. The default value is likely to give a
robust algorithm without significant expense, but faster convergence can sometimes be obtained with
signficantly fewer updates (e.g., i ¼ 5).

E04WDF NAG Fortran Library Manual

E04WDF.28 [NP3657/21]



Infinite Bound Size r Default ¼ 1020

If r > 0, r defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper
bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly any lower bound less
than or equal to �bigbnd will be regarded as minus infinity). If r � 0, the default value is used.

Linesearch Tolerance r Default ¼ 0:9

This tolerance, r, controls the accuracy with which a steplength will be located along the direction of each
search iteration. At the start of each line search a target directional derivative for the merit function is
identified. This parameter determines the accuracy to which this target value is approximated.

r must be a double precision value in the range 0:0 � r � 1:0.

The default value r ¼ 0:9 requests just moderate accuracy in the line search.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
r ¼ 0:1, 0:01 or 0:001.

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If all

gradients are known, try r ¼ 0:99. (The number of major iterations might increase, but the total number of
function evaluations may decrease enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each search will require
only 1–5 function values (typically), but many function calls will then be needed to estimate missing
gradients for the next iteration.

List Default ¼ Nolist
Nolist

For E04WDF, normally each optional parameter specification is printed as it is supplied. Nolist may be
used to suppress the printing and List may be used to turn on printing.

LU Factor Tolerance r1 Default ¼ 1:01
LU Update Tolerance r2 Default ¼ 1:01

The values of r1 and r2 affect the stability of the basis factorization B ¼ LU , during refactorization and
updates respectively. The lower triangular matrix L is a product of matrices of the form

1

	 1

� �

where the multipliers 	 will satisfy 	j j � ri. The default values of r1 and r2 usually strike a good
compromise between stability and sparsity. They must satisfy r1, r2 � 1:0.

For large and relatively dense problems, r1 ¼ 10:0 or 5:0 (say) may give a useful improvement in stability
without impairing sparsity to a serious degree.

LU Partial Pivoting Default
LU Rook Pivoting
LU Complete Pivoting

The LU factorization implements a Markowitz-type search for a pivot that locally minimizes the fill-in
subject to a threshhold pivoting stability criterion. The default option is to use threshhold partial pivoting.
The options LU Rook Pivoting and LU Complete Pivoting are more expensive than partial pivoting but
are more stable and better at revealing rank.

LU Density Tolerance r1 Default ¼ 0:6
LU Singularity Tolerance r2 Default ¼

ffiffi
�

p

The density tolerance, r1, is used during LU factorization of the basis matrix. Columns of L and rows of
U are formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At
any stage, if the density of the remaining matrix exceeds r1, the Markowitz strategy for choosing pivots is
terminated. The remaining matrix is factored by a dense LU procedure. Raising the density tolerance
towards 1.0 may give slightly sparser LU factors, with a slight increase in factorization time.
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The singularity tolerance, r2, helps guard against ill-conditioned basis matrices. When the basis is

refactorized, the diagonal elements of U are tested as follows: if Ujj

�� �� � r2 or Ujj

�� �� < r2maxi Uij

�� ��, the jth

column of the basis is replaced by the corresponding slack variable. (This is most likely to occur after a
restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For
example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity
occurs, the basis could become very ill-conditioned and the optimization could progress very slowly (if at
all). Setting a larger tolerance r2 ¼ 1:0D� 5, say, may help cause a judicious change of basis.

Major Feasibility Tolerance r Default ¼ 1:0D� 6

This tolerance, r, specifies how accurately the nonlinear constraints should be satisfied. The default value
is appropriate when the linear and nonlinear constraints contain data to about that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of the solution. It is
required to satisfy

rowerr ¼ max
i

violi= xk k � r, ð12Þ

where violi is the violation of the ith nonlinear constraint i ¼ 1 : NCLINð Þ.
In the major iteration log (see Section 12.2, rowerr appears as the quantity labelled ‘Feasible’. If some of
the problem functions are known to be of low accuracy, a larger Major Feasibility Tolerance may be
appropriate.

Major Optimality Tolerance r Default ¼ 2:0D� 6

This tolerance, r, specifies the final accuracy of the dual variables. On successful termination, E04WDF
will have computed a solution x; s; �ð Þ such that

maxComp ¼ max
j

Compj= �k k � r, ð13Þ

where Compj is an estimate of the complementarity slackness for variable j j ¼ 1 : nþmð Þ. The values

Compi are computed from the final QP solution using the reduced gradients dj ¼ gj � �Taj (where gj is

the jth component of the objective gradient, aj is the associated column of the constraint matrix A �Ið Þ,
and � is the set of QP dual variables):

Compj ¼
djmin xj � lj; 1

� �
if dj � 0;

�djmin uj � xj; 1
� �

if dj < 0.

	 �
ð14Þ

In the Print File, maxComp appears as the quantity labelled ‘Optimal’.

Major Iterations Limit i Default ¼ max 1000;mf g
This is the maximum number of major iterations allowed. It is intended to guard against an excessive
number of linearizations of the constraints.

Major Print Level i Default ¼ 00001

This controls the amount of output to the Print File and Summary File at each major iteration. Major
Print Level 0 suppresses most output, except for error messages. Major Print Level 1 gives normal
output for linear and nonlinear problems, and Major Print Level 11 gives additional details of the
Jacobian factorization that commences each major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major Print Level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is not strictly
binary since the summary line is printed whenever JFDXbs � 1;

b basis statistics, i.e., information relating to the basis matrix whenever it is refactorized. (This output
is always provided if JFDXbs � 10;
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X xk, the nonlinear variables involved in the objective function or the constraints;

D �k, the dual variables for the nonlinear constraints;

F F xkð Þ, the values of the nonlinear constraint functions;

J J xkð Þ, the Jacobian matrix.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J ¼ 1, the Jacobian matrix will be output column-wise at the start of each major iteration. Column j
will be preceded by the value of the corresponding variable xj and a key to indicate whether the variable is

basic, superbasic or nonbasic. (Hence if J ¼ 1, there is no reason to specify X ¼ 1 unless the objective
contains more nonlinear variables than the Jacobian.) A typical line of output is

3 1.250000D+-1 BS 1 1.00000D+00 4 2.00000D+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has elements of 1.0
and 2.0 in rows 1 and 4.

Major Step Limit r Default ¼ 2:0

This parameter limits the change in x during a line search. It applies to all nonlinear problems, once a
‘feasible solution’ or ‘feasible subproblem’ has been found.

1. A line search determines a step � over the range 0 < � � �, where � is 1 if there are nonlinear
constraints, or the step to the nearest upper or lower bound on x if all the constraints are linear.
Normally, the first steplength tried is �1 ¼ min 1; �ð Þ.

2. In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the components of x
can lead to floating-point overflow. The parameter r is therefore used to define a limit
��� ¼ r 1þ xk kð Þ= pk k (where p is the search direction), and the first evaluation of f xð Þ is at the

potentially smaller steplength �1 ¼ min 1; ���; �
� �

.

3. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The Major Step Limit provides an additional safeguard. The
default value r ¼ 2:0 should not affect progress on well behaved problems, but setting
r ¼ 0:1 or 0:01 may be helpful when rapidly varying functions are present. A ‘good’ starting point
may be required. An important application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate an optimum
near the starting point.

Minimize Default
Maximize
Feasible Point

The keywords Minimize and Maximize specify the required direction of optimization. It applies to both
linear and nonlinear terms in the objective.

The keyword Feasible Point means ‘Ignore the objective function’ while finding a feasible point for the
linear and nonlinear constraints. It can be used to check that the nonlinear constraints are feasible without
altering the call to E04WDF.

Minor Feasibility Tolerance r Default ¼ 1:0D� 6

E04WDF tries to ensure that all variables eventually satisfy their upper and lower bounds to within this
tolerance, r. This includes slack variables. Hence, general linear constraints should also be satisfied to
within r.

Feasibility with respect to nonlinear constraints is judged by the Major Feasibility Tolerance (not by r).

If the bounds and linear constraints cannot be satisfied to within r, the problem is declared infeasible. Let
sInf be the corresponding sum of infeasibilities. If sInf is quite small, it may be appropriate to raise r
by a factor of 10 or 100. Otherwise, some error in the data should be suspected.
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Nonlinear functions will be evaluated only at points that satisfy the bounds and linear constraints. If there
are regions where a function is undefined, every attempt should be made to eliminate these regions from
the problem.

For example, if f xð Þ ¼ ffiffiffiffiffi
x1

p þ log x2ð Þ, it is essential to place lower bounds on both variables. If

r ¼ 1:0D� 6, the bounds x1 � 10�5 and x2 � 10�4 might be appropriate. (The log singularity is more
serious. In general, keep x as far away from singularities as possible.)

If Scale Option � 1, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful).

In reality, E04WDF uses r as a feasibility tolerance for satisfying the bounds on x and s in each QP
subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared
infeasible. E04WDF is then in elastic mode thereafter (with only the linearized nonlinear constraints
defined to be elastic). See the Elastic Mode options.

Minor Iterations Limit i Default ¼ 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds i, then all
nonbasic QP variables that have not yet moved are frozen at their current values and the reduced QP is
solved to optimality.

Note that more than i minor iterations may be necessary to solve the reduced QP to optimality. These
extra iterations are necessary to ensure that the terminated point gives a suitable direction for the line
search.

In the major iteration log (see Section 12.2) a ‘t’ at the end of a line indicates that the corresponding QP
was artificially terminated using the limit i.

Note that Minor Iterations Limit defines and independent absolute limit on the total number of minor
iterations (summed over all QP subproblems).

Minor Print Level i Default ¼ 1

This controls the amount of output to the Print File and Summary File during solution of the QP
subproblems. The value of i has the following effect:

0 No minor iteration output except error messages.

� 1 A single line of output at each minor iteration (controlled by Print Frequency and Summary
Frequency.

� 10 Basis factorization statistics generated during the periodic refactorization of the basis (see
Factorization Frequency). Statistics for the first factorization each major iteration are controlled
by the Major Print Level.

New Basis File i1 Default ¼ 0
Backup Basis File i2 Default ¼ 0
Save Frequency i3 Default ¼ 100

New Basis File and Backup Basis File are sometimes referred to as basis maps. They contain the most
compact representation of the state of each variable. They are intended for restarting the solution of a
problem at a point that was reached by an earlier run. For non-trivial problems, it is advisable to save
basis maps at the end of a run, in order to restart the run if necessary.

If i1 > 0, a basis map will be saved on the file associated with unit i1 every i3th iteration. The first record
of the file will contain the word PROCEEDING if the run is still in progress. A basis map will also be
saved at the end of a run, with some other word indicating the final solution status.

Using i2 > 0, is intended as a safeguard against losing the results of a long run. Suppose that a New Basis
File is being saved every 100 (Save Frequency) iterations, and that E04WDF is about to save such a basis
at iteration 2000. It is conceivable that the run may be interrupted during the next few milliseconds (in the
middle of the save). In this case the basis file will be corrupted and the run will have been essentially
wasted.
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To eliminate this risk, both a New Basis File and a Backup Basis File may be specified. The following
would be suitable for the above example:

Backup Basis File 11
New Basis File 12

The current basis will then be saved every 100 iterations, first on the file associated with unit 12 and then
immediately on the file associated with unit 11. If the run is interrupted at iteration 2000 during the save
on the file associated with unit 12, there will still be a usable basis on the file associated with unit 11
(corresponding to iteration 1900).

Note that a new basis will be saved in New Basis File at the end of a run if it terminates normally, but it
will not be saved in Backup Basis File. In the above example, if an optimum solution is found at iteration
2050 (or if the iteration limit is 2050), the final basis on the file associated with unit 12 will correspond to
iteration 2050, but the last basis saved on the file associated with unit 11 will be the one for iteration 2000.

A full description of information recorded in New Basis File and Backup Basis File is given in Gill et al.
(1999).

New Superbasics Limit i Default ¼ 99

This option causes early termination of the QP subproblems if the number of free variables has increased
significantly since the first feasible point. If the number of new superbasics is greater than i the nonbasic
variables that have not yet moved are frozen and the resulting smaller QP is solved to optimality.

In the major iteration log (see Section 12.1), a ‘T’ at the end of a line indicates that the QP was terminated
early in this way.

Old Basis File i Default ¼ 0

If i > 0, the basis maps information will be obtained from this file. A full description of information
recorded in New Basis File and Backup Basis File is given in Gill et al. (1999). The file will usually
have been output previously as a New Basis File or Backup Basis File.

The file will not be acceptable if the number of rows or columns in the problem has been altered.

Partial Price i Default ¼ 1

This parameter is recommended for large problems that have significantly more variables than constraints.
It reduces the work required for each ‘pricing’ operation (when a nonbasic variable is selected to become
superbasic).

When i ¼ 1, all columns of the constraint matrix A �Ið Þ are searched.

Otherwise, A and I are partitioned to give i roughly equal segments Aj, Ij (j ¼ 1 to i). If the previous

pricing search was successful on Aj, Ij, the next search begins on the segments Ajþ1 Ijþ1. (All subscripts

here are modulo i.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest such
reduced gradient (of appropriate sign) is selected to become superbasic. If nothing is found, the search
continues on the next segments Ajþ2 Ijþ2, and so on.

Partial Price r (or r=2 or r=3) may be appropriate for time-stage models having r time periods.

Pivot Tolerance r Default ¼ 10� �

During the solution of QP subproblems, the pivot tolerance is used to prevent columns entering the basis if
they would cause the basis to become almost singular.

When x changes to xþ �p for some search direction p, a ‘ratio test’ is used to determine which
component of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element.

Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot
tolerance r.
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It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Minor Feasibility Tolerance (say t) provides some freedom to maximize the pivot element and thereby
improve numerical stability. Excessively small values of t should therefore not be specified.

To a lesser extent, the Expand Frequency (say f) also provides some freedom to maximize the pivot
element. Excessively large values of f should therefore not be specified.

Print File i Default ¼ 0

If i > 0, the following information is output to a file associated with unit i during the solution of each
problem:

a listing of the optional parameters;

some statistics about the problem;

the amount of storage available for the LU factorization of the basis matrix;

notes about the initial basis resulting from a crash procedure or a Basis File;

the iteration log;

basis factorization statistics;

the exit IFAIL condition and some statistics about the solution obtained;

the printed solution, if requested.

These items are described in Sections 8 and 12. Further brief output may be directed to the Summary
File.

Print Frequency i Default ¼ 100

If i > 0, one line of the iteration log will be printed every ith iteration. A value such as i ¼ 10 is
suggested for those interested only in the final solution.

Proximal Point Method i Default ¼ 1

i ¼ 1 or 2 specifies minimization of x� x0k k1 or 1
2
x� x0k k2

2
when the starting point x0 is changed to

satisfy the linear constraints (where x0 refers to nonlinear variables).

Punch File i1 Default ¼ 0
Insert File i2 Default ¼ 0

The Punch File from a previous run may be used as an Insert File for a later run on the same problem. A
full description of information recorded in Insert File and Punch File is given in Gill et al. (1999).

If i1 > 0, the final solution obtained will be output to the file associated with unit i2. For linear programs,
this format is compatible with various commercial systems.

If i2 > 0, the Insert File containing basis information will be read from unit i2. The file will usually have
been output previously as a Punch File. The file will not be accessed if Old Basis File is specified.

Scale Option i Default ¼ 0
Scale Tolerance r Default ¼ 0:9

Three scale options are available as follows:

i Meaning
0 No scaling. This is recommended if it is known that x and the constraint matrix never have very

large elements (say, larger than 1000).
1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix

coefficients as close as possible to 1.0 (see Fourer (1982)). This will sometimes improve the
performance of the solution procedures.
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2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional
scaling is performed that may be helpful if the right-hand side b or the solution x is large. This
takes into account columns of A �Ið Þ that are fixed or have positive lower bounds or negative
upper bounds.

Scale Tolerance affects how many passes might be needed through the constraint matrix. On each pass,
the scaling procedure computes the ratio of the largest and smallest non-zero coefficients in each column:


j ¼ max
i

aij
�� ��=min

i
aij
�� �� aij 6¼ 0

� �
.

If max
j is less than r times its previous value, another scaling pass is performed to adjust the row and

column scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A.
At most 10 passes are made.

Solution File i Default ¼ 0

If i > 0, the final solution will be output to file i (whether optimal or not). All numbers are printed in
1pe16.6 format.

To see more significant digits in the printed solution, it will sometimes be useful to make i refer to Print
File.

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable i3 Default ¼ 1
Stop Constraint Check At Variable Default ¼ n

These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by subroutine OBJFUN and/or Jacobian elements computed by subroutine
CONFUN. For example, if the first 30 elements of the objective gradient appeared to be correct in an
earlier run, so that only element 31 remains questionable, it is reasonable to specify Start Objective
Check At Variable 31. If the first 30 variables appear linearly in the objective, so that the corresponding
gradient elements are constant, the above choice would also be appropriate.

Summary File i1 Default ¼ 0
Summary Frequency i2 Default ¼ 100

If i1 > 0, a brief log will be output to the file associated with unit i1, including one line of information
every i2th iteration. In an interactive environment, it is useful to direct this output to the terminal, to allow
a run to be monitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in Section 12.6.

Superbasics Limit i Default ¼ min 500; n1 þ 1ð Þ
This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger
than the ‘number of degrees of freedom’ expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number of
variables lying strictly between their bounds is no more than m, the number of general constraints.) The
default value of i is therefore 1.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’.

Normally, i need not be greater than n1 þ 1, where n1 is the number of nonlinear variables.

For many problems, i may be considerably smaller than n1. This will save storage if n1 is very large.

Suppress Parameters

Normally E04WDF prints the optional file as it is being read, and then prints a complete list of the
available keywords and their final values. The Suppress Parameters option tells E04WDF not to print the
full list.
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Timing Level i Default ¼ 0

If i > 0, some timing information will be output to the Print File, if it is > 0.

Unbounded Objective r1 Default ¼ 1:0Dþ 15
Unbounded Step Size r2 Default ¼ 1:0Dþ 20

These parameters are intended to detect unboundedness in nonlinear problems. During a line search, F is
evaluated at points of the form xþ �p, where x and p are fixed and � varies. If Fj j exceeds r1 or �
exceeds r2, iterations are terminated with the exit message

Problem is unbounded (or badly scaled)

If singularities are present, unboundedness in F xð Þ may be manifested by a floating-point overflow (during
the evaluation of F xþ �pð Þ), before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Verify Level i Default ¼ 0

This option refers to finite-difference checks on the derivatives computed by the user-provided routines.
Derivatives are checked at the first point that satisfies all bounds and linear constraints.

i Meaning
0 Only a ‘cheap’ test will be performed, requiring two calls to CONFUN.
1 Individual gradients will be checked (with a more reliable test). A key of the form OK or Bad?

indicates whether or not each component appears to be correct.
2 Individual columns of the problem Jacobian will be checked.
3 Options 2 and 1 will both occur (in that order).
�1 Derivative checking is disabled.

Verify Level 3 should be specified whenever a new function routine is being developed. The Start and
Stop keywords may be used to limit the number of nonlinear variables checked. Missing derivatives are
not checked, so they result in no overhead.

Violation Limit r Default ¼ 1:0Dþ 6

This keyword defines an absolute limit on the magnitude of the maximum constraint violation, r, after the
line search. On completion of the line search, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � r max 1; vi x0ð Þf g,
where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li � c xð Þ; c xð Þ � uið Þ.
The effect of this violation limit is to restrict the iterates to lie in an expanded feasible region whose size
depends on the magnitude of r. This makes it possible to keep the iterates within a region where the
objective is expected to be well-defined and bounded below. If the obective is bounded below for all
values of the variables, then r may be any large positive value.

12 Description of Monitoring Information

E04WDF produces monitoring information, statistical information and information about the solution.
Section 8.1 contains the final output information sent to Print File. This section contains other output
information.

12.1 Major Iteration Log

This section describes the output to Print File if Major Print Level > 0. One line of information is
output every kth major iteration, where k is Print Frequency.

Label Description

Itns is the cumulative number of minor iterations.

Major is the current major iteration number.
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Minors is the number of iterations required by both the feasibility and optimality phases of
the QP subproblem. Generally, Minors will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 10).

Step is the step length � taken along the current search direction p. The variables x have
just been changed to xþ �p. On reasonably well-behaved problems, the unit step
will be taken as the solution is approached.

nCon the number of times subroutine CONFUN has been called to evaluate the nonlinear
problem functions. Evaluations needed for the estimation of the derivatives by
finite differences are not included. nCon is printed as a guide to the amount of work
required for the line search.

Feasible is the value of rowerr (see (12)), the maximum component of the scaled nonlinear
constraint residual (see Major Feasibility Tolerance). The solution is regarded as
acceptably feasible if Feasible is less than the Major Feasibility Tolerance. In
this case, the entry is contained in parentheses.

If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of maxComp (see (13), the maximum complementary gap (see Major
Optimalility Tolerance). It is an estimate of the degree of nonoptimality of the
reduced costs. Both Feasible and Optimal are small in the neighbourhood of a
solution.

MeritFunction is the value of the augmented Lagrangian merit function (see (7)). This function
will decrease at each iteration unless it was necessary to increase the penalty
parameters (see Section 10.4. As the solution is approached, MeritFunction will
converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the constraint
violations weighted by the elastic weight.

If the constraints are linear, this item is labelled Objective, the value of the
objective function. It will decrease monotonically to its optimal value.

L+U is the number of non-zeros representing the basis factors L and U on completion of
the QP subproblem.

If nonlinear constraints are present, the basis factorization B ¼ LU is computed at
the start of the first minor iteration. At this stage, LU ¼ lenLþ lenU, where LenL
(see Section 12.3) is the number of sub-diagonal elements in the columns of a lower
triangular matrix and lenU (see Section 12.3) is the number of diagonal and super-
diagonal elements in the rows of an upper-triangular matrix.

As columns of B are replaced during the minor iterations, LU may fluctuate up or
down but, in general, will tend to increase. As the solution is approached and the
minor iterations decrease towards zero, LU will reflect the number of non-zeros in
the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorization
Frequency, and LU will tend to increase between factorizations.

BSwap is the number of columns of the basis matrix B that were swapped with columns of
S to improve the condition of B. The swaps are determined by an LU factorization

of the rectangular matrix BS ¼ B Sð ÞT with stability being favoured more than
sparsity.

nS is the current number of superbasic variables.

CondHz is an estimate of the condition number of RTR, an estimate of ZTHZ, the reduced
Hessian of the Lagrangian. It is the square of the ratio of the largest and smallest
diagonals of the upper triangular matrix R (which is a lower bound on the condition

number of RTR). CondHz gives a rough indication of whether or not the
optimization procedure is having difficulty. If � is the relative machine precision
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being used, the SQP algorithm will make slow progress if CondHz becomes as large

as ��1=2 � 108, and will probably fail to find a better solution if CondHz reaches

��3=4 � 1012.

To guard against high values of CondHz, attention should be given to the scaling of
the variables and the constraints. In some cases it may be necessary to add upper or
lower bounds to certain variables to keep them a reasonable distance from
singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if there are no nonlinear constraints).

The summary line may include additional code characters that indicate what happened during the course of
the major iteration.

Label Description

c central differences have been used to compute the unknown components of the
objective and constraint gradients. A switch to central differences is made if either
the line search gives a small step, or x is close to being optimal. In some cases, it
may be necessary to re-solve the QP subproblem with the central difference gradient
and Jacobian.

d during the line search it was necessary to decrease the step in order to obtain a
maximum constraint violation conforming to the value of Violation Limit.

l the norm-wise change in the variables was limited by the value of the Major Step
Limit. If this output occurs repeatedly during later iterations, it may be worthwhile
increasing the value of Major Step Limit.

i If E04WDF is not in elastic mode, an ‘i’ signifies that the QP subproblem is
infeasible. This event triggers the start of nonlinear elastic mode, which remains in
effect for all subsequent iterations. Once in elastic mode, the QP subproblems are
associated with the elastic problem (11) (see Section 10.5).

If E04WDF is already in elastic mode, an ‘i’ indicates that the minimizer of the
elastic subproblem does not satisfy the linearized constraints. (In this case, a
feasible point for the usual QP subproblem may or may not exist.)

M an extra evaluation of the problem functions was needed to define an acceptable
positive-definite quasi-Newton update to the Lagrangian Hessian. This modification
is only done when there are nonlinear constraints.

m this is the same as ‘M’ except that it was also necessary to modify the update to
include an augmented Lagrangian term.

n no positive-definite BFGS update could be found. The approximate Hessian is
unchanged from the previous iteration.

R the approximate Hessian has been reset by discarding all but the diagonal elements.
This reset will be forced periodically by the Hessian Frequency and Hessian
Updates keywords. However, it may also be necessary to reset an ill-conditioned
Hessian from time to time.

r the approximate Hessian was reset after ten consecutive major iterations in which no
BFGS update could be made. The diagonals of the approximate Hessian are
retained if at least one update has been done since the last reset. Otherwise, the
approximate Hessian is reset to the identity matrix.

s a self-scaled BFGS update was performed. This update is always used when the
Hessian approximation is diagonal, and hence always follows a Hessian reset.

t the minor iterations were terminated because of the Minor Iterations Limit.

T the minor iterations were terminated because of the New Superbasics Limit.

u the QP subproblem was unbounded.
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w a weak solution of the QP subproblem was found.

z the Superbasics Limit was reached.

12.2 Minor Iteration Log

If Minor Print Level > 0, one line of information is output to the Print File every kth minor iteration,
where k is the specified Print Frequency. A heading is printed before the first such line following a basis
factorization. The heading contains the items described below. In this description, a pricing operation is
defined to be the process by which a nonbasic variable is selected to become superbasic (in addition to
those already in the superbasic set). The selected variable is denoted by jq. Variable jq often becomes
basic immediately. Otherwise it remains superbasic, unless it reaches its opposite bound and returns to the
nonbasic set.

If Partial Price is in effect, variable jq is selected from App or Ipp, the ppth segments of the constraint

matrix A � I
� �

.

Label Description

Itn the current iteration number.

RedCost or QPmult is the reduced cost (or reduced gradient) of the variable jq selected by the pricing

procedure at the start of the present itearation. Algebraically, dg is dj ¼ gj � �Taj
for j ¼ jq, where gj is the gradient of the current objective function, � is the vector

of dual variables for the QP subproblem, and aj is the jth column of A � I
� �

.

Note that dj is the 1-norm of the reduced-gradient vector at the start of the iteration,
just after the pricing procedure.

LPstep or QPstep is the step length � taken along the current search direction p. The variables x have
just been changed to xþ �p. If a variable is made superbasic during the current
iteration (+SBS > 0), Step will be the step to the nearest bound. During Phase 2,
the step can be greater than one only if the reduced Hessian is not positive-definite.

nInf is the number of infeasibilities after the present iteration. This number will not
increase unless the iterations are in elastic mode.

SumInf If nInf > 0, this is sInf, the sum of infeasibilities after the present iteration. It
usually decreases at each non-zero Step, but if nInf decreases by 2 or more,
SumInf may occasionally increase.

In elastic mode, the heading is changed to Composite Obj, and the value printed
decreases monotonically.

rgNorm is the norm of the reduced-gradient vector at the start of the iteration. (It is the
norm of the vector with elements dj for variables j in the superbasic set.) During

Phase 2 this norm will be approximately zero after a unit step.

(The heading is not printed if the problem is linear.)

LPobjective or QPobjective
the QP objective function after the present iteration. In elastic mode, the heading is
changed to Elastic QPobj. In either case, the value printed decreases
monotonically.

+SBS is the variable jq selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the set of superbasics.

-BS is the variable removed from the basis (if any) to become nonbasic.

Pivot if column aq replaces the rth column of the basis B, Pivot is the rth element of a

vector y satisfying By ¼ aq. Wherever possible, Step is chosen to avoid extremely

small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot Tolerance to exclude very small
elements of y from consideration during the computation of Step.

|

|
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Lþ U is the number of non-zeros representing the basis factors L and U . Immediately
after a basis factorization B ¼ LU , this is lenLþ lenU, the number of sub-diagonal
elements in the columns of a lower triangular matrix and the number of diagonal
and super-diagonal elements in the rows of an upper-triangular matrix. Further non-
zeros are added to L when various columns of B are later replaced. As columns of
B are replaced, the matrix U is maintained explicitly (in sparse form). The value of
L will steadily increase, whereas the value of U may fluctuate up or down. Thus the
value of Lþ U may fluctuate up or down (in general, it will tend to increase).

ncp is the number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization.

nS is the current number of superbasic variables. (The heading is not printed if the
problem is linear.)

CondHz see the major iteration log. (The heading is not printed if the problem is linear.)

12.3 Basis Factorization Statistics

If Major Print Level � 10, the following items are output to the Print File whenever the basis B or the

rectangular matrix BS ¼ B Sð ÞT is factorized before solution of the next QP subproblem.

Note that BS may be factorized at the start of just some of the major iterations. It is immediately followed
by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS, where PLPT and PUQ
are lower and upper triangular matrices for some permutation matrices P and Q. Stability is ensured as
described under LU Factor Tolerance.

If Minor Print Level � 10, the same items are printed during the QP solution whenever the current B is
factorized.

Label Description

Factorize the number of factorizations since the start of the run.

Demand a code giving the reason for the present factorization.

Code Meaning
0 First LU factorization.
1 The number of updates reached the Factorization Frequency.
2 The non-zeros in the updated factors have increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description of Check Frequency).
11 Ill-conditioning has caused inconsistent results.

Itn is the current minor iteration number.

Nonlin is the number of nonlinear variables in the current basis B.

Linear is the number of linear variables in B.

Slacks is the number of slack variables in B.

B BR BS or BT factorize
is the type of LU factorization.

B periodic factorization of the basis B.
BR more careful rank-revealing factorization of B using threshold rook

pivoting. This occurs mainly at the start, if the first basis factors seem
singular or ill-conditioned. Followed by a normal B factorize.

BS BS is factorized to choose a well-conditioned B from the current B Sð Þ.
Followed by a normal B factorize.

BT same as BS except the current B is tried first and accepted if it appears to be
not much more ill-conditioned than after the previous BS factorize.
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m is the number of rows in B or BS.

n is the number of columns in B or BS. Preceded by ‘=’ or ‘>’ respectively.

Elems is the number of non-zero elements in B or BS.

Amax is the largest non-zero in B or BS.

Density is the percentage non-zero density of B or BS.

Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ where c and r are the
number of non-zeros in the column and row containing the element at the time it is
selected to be the next diagonal. Merit is the average of n such quantities. It gives
an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of non-zeros in L.

Cmpressns is the number of times the data structure holding the partially factored matrix
needed to be compressed to recover unused storage. Ideally this number should be
zero. If it is more than 3 or 4, the amount of workspace available to E04WDF
should be increased for efficiency.

Incres is the percentage increase in the number of non-zeros in L and U relative to the
number of non-zeros in B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU the number of non-zeros in U .

Ltol is the maximum subdiagonal element allowed in L. This is the specified LU
Factor Tolerance or a smaller value that is currently being used for greater stability.

Umax the maximum non-zero element in U .

Ugrwth is the ratio Umax=Amax, which ideally should not be substantially larger than 10.0 or
100.0. If it is orders of magnitude larger, it may be advisable to reduce the LU
Factor Tolerance to 5.0, 4.0, 3.0 or 2.0, say (but bigger than 1.0).

As long as Lmax is not large (say 10.0 or less), max Amax; Umaxf g=DUmin gives an
estimate of the condition number B. If this is extremely large, the basis is nearly
singular. Slacks are used to replace suspect columns of B and the modified basis is
refactored.

Ltri is the number of triangular columns of B or BS at the left of L.

dense1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the actual maximum sub-diagonal element in L (bounded by Ltol).

Akmax is the largest non-zero generated at any stage of the LU factorization. (Values much
larger than Amax indicate instability.)

growth is the ratio Akmax=Amax. Values much larger than 100 (say) indicate instability.

bump is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6. (The Markowitz pivot strategy searches fewer columns at
that stage.)

DUmax is the largest diagonal of PUQ.

DUmin is the smallest diagonal of PUQ.

condU the ratio DUmax=DUmin, which estimates the condition number of U (and of B if
Ltol is less than 100, say).
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12.4 Crash Statistics

If Major Print Level � 10, the following items are output to the Print File when Cold Start and no basis
file is loaded. They refer to the number of columns that the Crash procedure selects during selected passes
through A while searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather
far apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., hs jð Þ ¼ 3 for some j � n).
It will be a subset of the columns for which hs jð Þ ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 non-zeros.

Triangle is the number of triangular columns in the basis with 3 or more non-zeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

12.5 The Solution File

At the end of a run, the final solution may be output as a solution file, according to Solution File. Some
header information appears first to identify the problem and the final state of the optimization procedure.
A ROWS section and a COLUMNS section then follow, giving one line of information for each row and
column. The format used is similar to certain commercial systems, though there is no industry standard.

In general, numerical values are output with format f16.5. The maximum record length is 111 characters,
including the first (carriage-control) character.

To reduce clutter, a full stop (.) is printed for any numerical value that is exactly zero. The values �1 are

also printed specially as 1:0 and �1:0. Infinite bounds (�1020 or larger) are printed as None.

A solution file is intended to be read from disk by a self-contained program that extracts and saves certain
values as required for possible further computation. Typically, the first 14 records would be ignored. Each
subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts with a 1 and
is otherwise blank. If this and the next 4 records are skipped, the COLUMNS section can then be read
under the same format. (There should be no need for backspace statements.)

The ROWS section

The general constraints take the form l � Ax � u. The ith constraint is therefore of the form

� � �i
Tx � �,

where �i is the ith row of A.

Internally, the constraints take the form Ax� s ¼ 0, where s is the set of slack variables (which happen to
satisfy the bounds l � s � u). For the ith constraint it is the slack variable si that is directly available, and
it is sometimes convenient to refer to its state. A ‘.’ is printed for any numerical value that is exactly zero.

Label Description

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of vi.

State the state of vi (the state of si relative to the bounds � and �. The various states
possible are as follows:
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LL si is nonbasic at its lower limit, �.

UL si is nonbasic at its upper limit, �.

EQ si is nonbasic and fixed at the value � ¼ �.

FR si is nonbasic and currently zero, even though it is free to take any value
between its bounds � and �.

BS si is basic.

SBS si is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance (see Section 11.2), the solution
would not be declared optimal because the reduced gradient for the variable
would not be considered negligible.

Activity is the value of vi at the final iterate (the ith element of ATx).

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound specified for the variable si. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is �, the upper bound specified for the variable si. None indicates that
BUðjÞ � bigbnd.

Dual Activity is the value of the dual variable �i (the Lagrange multiplier for the ith constraints).

The full vector � always satisfies BT� ¼ gB, where B is the current basis matrix
and gB contains the associated gradients for the current objective function. For FP
problems, �i is set to zero.

i gives the index i of the ith row.
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The COLUMNS section

Let the jth component of x be the variable xj and assume that it satisfies the bounds � � xj � �. A ‘.’ is

printed for any numerical value that is exactly zero.

Label Description

Number is the column number j. (This is used internally to refer to xj in the intermediate

output.)

Column gives the name of xj.

State the state of xj relative to the bounds � and �. The various states possible are as

follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.

FR xj is nonbasic and currently zero, even though it is free to take any value

between its bounds � and �.

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter Scale Option ¼ 0
(see Section 11.2) is specified, the tests for assigning a key are applied to the
variables of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter Feasibility
Tolerance (see Section 11.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter Major Optimality Tolerance (see Section 11.2), the solution
would not be declared optimal because the reduced gradient for the variable
would not be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound is the lower bound specified for the variable. None indicates that
BLðjÞ � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that BUðjÞ � bigbnd.

Reduced Gradnt is the value of the reduced gradient dj ¼ gj � �Taj where aj is the jth column of

the constraint matrix. For FP problems, dj is set to zero.

m + j is the value of mþ j.
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12.6 The Summary File

If Summary File > 0, the following information is output to the unit number associated with Summary
File. (it is a brief summary of the output directed to Print File):

the optional parameters supplied via the option setting routines, if any;

the basis file loaded, if any;

a brief major iteration log (see Section 12.1);

a brief minor iteration log (see Section 12.2);

the exit condition, IFAIL;

a summary of the final iterate.

E04 – Minimizing or Maximizing a Function E04WDF

[NP3657/21] E04WDF.45 (last)


	E04WDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	NCLIN
	NCNLN
	LDA
	LDCJ
	LDH
	A
	BL
	BU
	CONFUN
	MODE
	NCNLN
	N
	LDCJ
	NEEDC
	X
	CCON
	CJAC
	NSTATE
	IUSER
	RUSER

	OBJFUN
	MODE
	N
	X
	OBJF
	GRAD
	NSTATE
	IUSER
	RUSER

	MAJITS
	ISTATE
	CCON
	CJAC
	CLAMDA
	OBJF
	GRAD
	HESS
	X
	IW
	LENIW
	RW
	LENRW
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	 = 1
	 = 2
	 = 3
	 = 4
	 = 5
	 = 6
	 = 7
	 = 8
	 = 9
	 = 10
	 = 11
	 = 12
	 = 13
	 = 14

	7 Accuracy
	8 Further Comments
	8.1 The Final Output

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	10.1 Constraints and Slack Variables
	10.2 Major Iterations
	10.3 Minor Iterations
	10.4 The Merit Function
	10.5 Treatment of Constraint Infeasibilities

	11 Optional Parameters
	11.1 Optional parameter checklist and default values
	11.2 Description of the optional parameters
	centraldifferenceinterval
	checkfrequency
	coldstart
	warmstart
	crashoption
	crashtolerance
	defaults
	derivativelevel
	derivativelinesearch
	nonderivativelinesearch
	differenceinterval
	dumpfile
	loadfile
	elasticmode
	elasticweight
	expandfrequency
	factorizationfrequency
	feasibilitytolerance
	functionprecision
	hessianfullmemory
	hessianlimitedmemory
	hessianfrequency
	hessianupdates
	infiniteboundsize
	linesearchtolerance
	list
	nolist
	LUfactortolerance
	LUupdatetolerance
	LUpartialpivoting
	LUrookpivoting
	LUcompletepivoting
	LUdensitytolerance
	LUsingularitytolerance
	majorfeasibilitytolerance
	majoroptimalitytolerance
	majoriterationslimit
	majorprintlevel
	majorsteplimit
	minimize
	maximize
	feasiblepoint
	minorfeasibilitytolerance
	minoriterationslimit
	minorprintlevel
	newbasisfile
	backupbasisfile
	savefrequency
	newsuperbasicslimit
	oldbasisfile
	partialprice
	pivottolerance
	printfile
	printfrequency
	proximalpointmethod
	punchfile
	insertfile
	scaleoption
	scaletolerance
	solutionfile
	start-obj-check-var
	[Sta]rt [O]bjective Check At Variable
	stop-obj-check-var
	[Sto]p [O]bjective Check At Variable
	startcon-check-var
	[Sta]rt [C]onstraint Check At Variable
	stopcon-check-var
	[Sto]p [C]onstraint Check At Variable
	summaryfile
	summaryfrequency
	superbasicslimit
	suppressparams
	timinglevel
	unboundedobjective
	unboundedstepsize
	verifylevel
	violationlimit


	12 Description of Monitoring Information
	12.1 Major Iteration Log
	12.2 Minor Iteration Log
	12.3 Basis Factorization Statistics
	12.4 Crash Statistics
	12.5 The Solution File
	12.6 The Summary File


	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



